ترغب بنشر مسار تعليمي؟ اضغط هنا

Landscape of Big Medical Data: A Pragmatic Survey on Prioritized Tasks

60   0   0.0 ( 0 )
 نشر من قبل Wanling Gao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Big medical data poses great challenges to life scientists, clinicians, computer scientists, and engineers. In this paper, a group of life scientists, clinicians, computer scientists and engineers sit together to discuss several fundamental issues. First, what are the unique characteristics of big medical data different from those of the other domains? Second, what are the prioritized tasks in clinician research and practices utilizing big medical data? And do we have enough publicly available data sets for performing those tasks? Third, do the state-of-the-practice and state-of-the-art algorithms perform good jobs? Fourth, are there any benchmarks for measuring algorithms and systems for big medical data? Fifth, what are the performance gaps of state-of-the-practice and state-of-the-art systems handling big medical data currently or in future? Finally but not least, are we, life scientists, clinicians, computer scientists and engineers, ready for working together? We believe answering the above issues will help define and shape the landscape of big medical data.

قيم البحث

اقرأ أيضاً

The very first infected novel coronavirus case (COVID-19) was found in Hubei, China in Dec. 2019. The COVID-19 pandemic has spread over 214 countries and areas in the world, and has significantly affected every aspect of our daily lives. At the time of writing this article, the numbers of infected cases and deaths still increase significantly and have no sign of a well-controlled situation, e.g., as of 13 July 2020, from a total number of around 13.1 million positive cases, 571, 527 deaths were reported in the world. Motivated by recent advances and applications of artificial intelligence (AI) and big data in various areas, this paper aims at emphasizing their importance in responding to the COVID-19 outbreak and preventing the severe effects of the COVID-19 pandemic. We firstly present an overview of AI and big data, then identify the applications aimed at fighting against COVID-19, next highlight challenges and issues associated with state-of-the-art solutions, and finally come up with recommendations for the communications to effectively control the COVID-19 situation. It is expected that this paper provides researchers and communities with new insights into the ways AI and big data improve the COVID-19 situation, and drives further studies in stopping the COVID-19 outbreak.
With the explosive increase of big data in industry and academic fields, it is necessary to apply large-scale data processing systems to analysis Big Data. Arguably, Spark is state of the art in large-scale data computing systems nowadays, due to its good properties including generality, fault tolerance, high performance of in-memory data processing, and scalability. Spark adopts a flexible Resident Distributed Dataset (RDD) programming model with a set of provided transformation and action operators whose operating functions can be customized by users according to their applications. It is originally positioned as a fast and general data processing system. A large body of research efforts have been made to make it more efficient (faster) and general by considering various circumstances since its introduction. In this survey, we aim to have a thorough review of various kinds of optimization techniques on the generality and performance improvement of Spark. We introduce Spark programming model and computing system, discuss the pros and cons of Spark, and have an investigation and classification of various solving techniques in the literature. Moreover, we also introduce various data management and processing systems, machine learning algorithms and applications supported by Spark. Finally, we make a discussion on the open issues and challenges for large-scale in-memory data processing with Spark.
39 - John W. Ayers 2016
The scientific method drives improvements in public health, but a strategy of obstructionism has impeded scientists from gathering even a minimal amount of information to address Americas gun violence epidemic. We argue that in spite of a lack of fed eral investment, large amounts of publicly available data offer scientists an opportunity to measure a range of firearm-related behaviors. Given the diversity of available data - including news coverage, social media, web forums, online advertisements, and Internet searches (to name a few) - there are ample opportunities for scientists to study everything from trends in particular types of gun violence to gun-related behaviors (such as purchases and safety practices) to public understanding of and sentiment towards various gun violence reduction measures. Science has been sidelined in the gun violence debate for too long. Scientists must tap the big media data stream and help resolve this crisis.
This regularly updated survey provides an overview of public resources that offer medical images and metadata of COVID-19 cases. The purpose of this survey is to simplify the access to open COVID-19 image data resources for all scientists currently working on the coronavirus crisis.
The Internet of Medical Things (IoMT) are increasing the accuracy, reliability, and the production capability of electronic devices by playing a very important part in the industry of healthcare. The available medical resources and services related t o healthcare are working to get an interconnection with each other by the digital healthcare system by the contribution of the researchers. Sensors, wearable devices, medical devices, and clinical devices are all connected to form an ecosystem of the Internet of Medical Things. The different applications of healthcare are enabled by the Internet of Medical Things to reduce the healthcare costs, to attend the medical responses on time and it also helps in increasing the quality of the medical treatment. The healthcare industry is transformed by the Internet of Medical Things as it delivers targeted and personalized medical care and it also seamlessly enables the communication of medical data. Devices used in the medical field and their application are connected to the system of healthcare of Information technology with the help of the digital world.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا