ترغب بنشر مسار تعليمي؟ اضغط هنا

Can Big Media Data Revolutionarize Gun Violence Prevention?

40   0   0.0 ( 0 )
 نشر من قبل Ted Alcorn
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف John W. Ayers




اسأل ChatGPT حول البحث

The scientific method drives improvements in public health, but a strategy of obstructionism has impeded scientists from gathering even a minimal amount of information to address Americas gun violence epidemic. We argue that in spite of a lack of federal investment, large amounts of publicly available data offer scientists an opportunity to measure a range of firearm-related behaviors. Given the diversity of available data - including news coverage, social media, web forums, online advertisements, and Internet searches (to name a few) - there are ample opportunities for scientists to study everything from trends in particular types of gun violence to gun-related behaviors (such as purchases and safety practices) to public understanding of and sentiment towards various gun violence reduction measures. Science has been sidelined in the gun violence debate for too long. Scientists must tap the big media data stream and help resolve this crisis.



قيم البحث

اقرأ أيضاً

Big medical data poses great challenges to life scientists, clinicians, computer scientists, and engineers. In this paper, a group of life scientists, clinicians, computer scientists and engineers sit together to discuss several fundamental issues. F irst, what are the unique characteristics of big medical data different from those of the other domains? Second, what are the prioritized tasks in clinician research and practices utilizing big medical data? And do we have enough publicly available data sets for performing those tasks? Third, do the state-of-the-practice and state-of-the-art algorithms perform good jobs? Fourth, are there any benchmarks for measuring algorithms and systems for big medical data? Fifth, what are the performance gaps of state-of-the-practice and state-of-the-art systems handling big medical data currently or in future? Finally but not least, are we, life scientists, clinicians, computer scientists and engineers, ready for working together? We believe answering the above issues will help define and shape the landscape of big medical data.
Big data production in industrial Internet of Things (IIoT) is evident due to the massive deployment of sensors and Internet of Things (IoT) devices. However, big data processing is challenging due to limited computational, networking and storage res ources at IoT device-end. Big data analytics (BDA) is expected to provide operational- and customer-level intelligence in IIoT systems. Although numerous studies on IIoT and BDA exist, only a few studies have explored the convergence of the two paradigms. In this study, we investigate the recent BDA technologies, algorithms and techniques that can lead to the development of intelligent IIoT systems. We devise a taxonomy by classifying and categorising the literature on the basis of important parameters (e.g. data sources, analytics tools, analytics techniques, requirements, industrial analytics applications and analytics types). We present the frameworks and case studies of the various enterprises that have benefited from BDA. We also enumerate the considerable opportunities introduced by BDA in IIoT.We identify and discuss the indispensable challenges that remain to be addressed as future research directions as well.
Life pattern clustering is essential for abstracting the groups characteristics of daily mobility patterns and activity regularity. Based on millions of GPS records, this paper proposed a framework on the life pattern clustering which can efficiently identify the groups have similar life pattern. The proposed method can retain original features of individual life pattern data without aggregation. Metagraph-based data structure is proposed for presenting the diverse life pattern. Spatial-temporal similarity includes significant places semantics, time sequential properties and frequency are integrated into this data structure, which captures the uncertainty of an individual and the diversities between individuals. Non-negative-factorization-based method was utilized for reducing the dimension. The results show that our proposed method can effectively identify the groups have similar life pattern and takes advantages in computation efficiency and robustness comparing with the traditional method. We revealed the representative life pattern groups and analyzed the group characteristics of human life patterns during different periods and different regions. We believe our work will help in future infrastructure planning, services improvement and policies making related to urban and transportation, thus promoting a humanized and sustainable city.
87 - Fa Li , Zhipeng Gui , Huayi Wu 2018
Big, fine-grained enterprise registration data that includes time and location information enables us to quantitatively analyze, visualize, and understand the patterns of industries at multiple scales across time and space. However, data quality issu es like incompleteness and ambiguity, hinder such analysis and application. These issues become more challenging when the volume of data is immense and constantly growing. High Performance Computing (HPC) frameworks can tackle big data computational issues, but few studies have systematically investigated imputation methods for enterprise registration data in this type of computing environment. In this paper, we propose a big data imputation workflow based on Apache Spark as well as a bare-metal computing cluster, to impute enterprise registration data. We integrated external data sources, employed Natural Language Processing (NLP), and compared several machine-learning methods to address incompleteness and ambiguity problems found in enterprise registration data. Experimental results illustrate the feasibility, efficiency, and scalability of the proposed HPC-based imputation framework, which also provides a reference for other big georeferenced text data processing. Using these imputation results, we visualize and briefly discuss the spatiotemporal distribution of industries in China, demonstrating the potential applications of such data when quality issues are resolved.
Social media provide access to behavioural data at an unprecedented scale and granularity. However, using these data to understand phenomena in a broader population is difficult due to their non-representativeness and the bias of statistical inferenc e tools towards dominant languages and groups. While demographic attribute inference could be used to mitigate such bias, current techniques are almost entirely monolingual and fail to work in a global environment. We address these challenges by combining multilingual demographic inference with post-stratification to create a more representative population sample. To learn demographic attributes, we create a new multimodal deep neural architecture for joint classification of age, gender, and organization-status of social media users that operates in 32 languages. This method substantially outperforms current state of the art while also reducing algorithmic bias. To correct for sampling biases, we propose fully interpretable multilevel regression methods that estimate inclusion probabilities from inferred joint population counts and ground-truth population counts. In a large experiment over multilingual heterogeneous European regions, we show that our demographic inference and bias correction together allow for more accurate estimates of populations and make a significant step towards representative social sensing in downstream applications with multilingual social media.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا