ﻻ يوجد ملخص باللغة العربية
High spin band structures of neutron-rich $^{152-158}$Pm isotopes have been obtained from the measurement of prompt $gamma$-rays of isotopically identified fragments produced in fission of $^{238}$U+$^{9}$Be and detected using the VAMOS++ magnetic spectrometer and EXOGAM segmented Clover array at GANIL and also from the high statistics $gamma$-$gamma$-$gamma$ and $gamma$-$gamma$-$gamma$-$gamma$ data from the spontaneous fission of $^{252}$Cf using Gammasphere. The excited states in $^{157}$Pm and those above the isomers in even-A Pm isotopes $^{152,154,156,158}$Pm have been identified for the first time. The spectroscopic information on the rotational band structures in odd-A Pm isotopes has been extended considerably to higher spins and the possibility of the presence of reflection asymmetric shapes is explored. The configuration assignments are based on the results of Cranked Relativistic Hartree-Bogoliubov calculations. From the systematics of bands in odd-A Pm isotopes and weak population of opposite parity bands, octupole deformed shapes in neutron rich Pm isotopes beyond $N=90$ seem unlikely to be present.
Low-lying excited states of the neutron-rich calcium isotopes $^{48-52}$Ca have been studied via $gamma$-ray spectroscopy following inverse-kinematics proton scattering on a liquid hydrogen target using the GRETINA $gamma$-ray tracking array. The ene
The Modular Neutron Array (MoNA) was used in conjunction with a large-gap dipole magnet (Sweeper) to measure neutron-unbound states in oxygen isotopes close to the neutron dripline. While no excited states were observed in 24O, a resonance at 45(2) k
The reaction mechanisms best suited for the production of neutron-rich nuclei, fragmentation and fission, are discussed. Measurements of the production cross sections of reaction residues together with model calculations allow to conclude about the e
We report on the mass measurements of several neutron-rich $mathrm{Rb}$ and $mathrm{Sr}$ isotopes in the $A approx 100$ region with the TITAN Penning-trap mass spectrometer. Using highly charged ions in the charge state $q=10+$, the masses of $^{98,9
The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerpr