ﻻ يوجد ملخص باللغة العربية
We answer the title question for sigma-unital C*-algebras. The answer is that the algebra must be the direct sum of a dual C*-algebra and a C*-algebra satisfying a certain local unitality condition. We also discuss similar problems in the context of Hilbert C*-bimodules and imprimitivity bimodules and in the context of centralizers of Pedersens ideal.
Multipliers of reproducing kernel Hilbert spaces can be characterized in terms of positivity of $n times n$ matrices analogous to the classical Pick matrix. We study for which reproducing kernel Hilbert spaces it suffices to consider matrices of boun
The Posit Number System was introduced in 2017 as a replacement for floating-point numbers. Since then, the community has explored its application in Neural Network related tasks and produced some unit designs which are still far from being competiti
Various post-quantum cryptography algorithms have been recently proposed. Supersingluar isogeny Diffie-Hellman key exchange (SIKE) is one of the most promising candidates due to its small key size. However, the SIKE scheme requires numerous finite fi
We show that $lambda$-symmetries can be algorithmically obtained by using the Jacobi last multiplier. Several examples are provided.
In this paper, we extend the notion of the Bogomolov multipliers and the CP-extensions to Lie algebras. Then we compute the Bogomolov multipliers for Abelian, Heisenberg and nilpotent Lie algebras of class at most 6. Finally we compute the Bogomolov multipliers of some simple complex Lie algebras.