ﻻ يوجد ملخص باللغة العربية
Multipliers of reproducing kernel Hilbert spaces can be characterized in terms of positivity of $n times n$ matrices analogous to the classical Pick matrix. We study for which reproducing kernel Hilbert spaces it suffices to consider matrices of bounded size $n$. We connect this problem to the notion of subhomogeneity of non-selfadjoint operator algebras. Our main results show that multiplier algebras of many Hilbert spaces of analytic functions, such as the Dirichlet space and the Drury-Arveson space, are not subhomogeneous, and hence one has to test Pick matrices of arbitrarily large matrix size $n$. To treat the Drury-Arveson space, we show that multiplier algebras of certain weighted Dirichlet spaces on the disc embed completely isometrically into the multiplier algebra of the Drury-Arveson space.
In this paper, we extend the notion of the Bogomolov multipliers and the CP-extensions to Lie algebras. Then we compute the Bogomolov multipliers for Abelian, Heisenberg and nilpotent Lie algebras of class at most 6. Finally we compute the Bogomolov multipliers of some simple complex Lie algebras.
In this paper we develop the theory of Fourier multiplier operators $T_{m}:L^{p}(mathbb{R}^{d};X)to L^{q}(mathbb{R}^{d};Y)$, for Banach spaces $X$ and $Y$, $1leq pleq qleq infty$ and $m:mathbb{R}^dto mathcal{L}(X,Y)$ an operator-valued symbol. The ca
We study weighted $(PLB)$-spaces of ultradifferentiable functions defined via a weight function (in the sense of Braun, Meise and Taylor) and a weight system. We characterize when such spaces are ultrabornological in terms of the defining weight syst
In this work we define partial (co)actions on multiplier Hopf algebras, we also present examples and properties. From a partial comodule coalgebra we construct a partial smash coproduct generalizing the constructions made by the L. Delvaux, E. Batista and J. Vercruysse.
The dual space of the C*-algebra of bounded uniformly continuous functions on a uniform space carries several natural topologies. One of these is the topology of uniform convergence on bounded uniformly equicontinuous sets, or the UEB topology for sh