ﻻ يوجد ملخص باللغة العربية
We introduce the combinatorial optimization problem Time Disjoint Walks (TDW), which has applications in collision-free routing of discrete objects (e.g., autonomous vehicles) over a network. This problem takes as input a digraph $G$ with positive integer arc lengths, and $k$ pairs of vertices that each represent a trip demand from a source to a destination. The goal is to find a walk and delay for each demand so that no two trips occupy the same vertex at the same time, and so that a min-max or min-sum objective over the trip durations is realized. We focus here on the min-sum variant of Time Disjoint Walks, although most of our results carry over to the min-max case. We restrict our study to various subclasses of DAGs, and observe that there is a sharp complexity boundary between Time Disjoint Walks on oriented stars and on oriented stars with the central vertex replaced by a path. In particular, we present a poly-time algorithm for min-sum and min-max TDW on the former, but show that min-sum TDW on the latter is NP-hard. Our main hardness result is that for DAGs with max degree $Deltaleq3$, min-sum Time Disjoint Walks is APX-hard. We present a natural approximation algorithm for the same class, and provide a tight analysis. In particular, we prove that it achieves an approximation ratio of $Theta(k/log k)$ on bounded-degree DAGs, and $Theta(k)$ on DAGs and bounded-degree digraphs.
For two positive integers $k$ and $ell$, a $(k times ell)$-spindle is the union of $k$ pairwise internally vertex-disjoint directed paths with $ell$ arcs between two vertices $u$ and $v$. We are interested in the (parameterized) complexity of several
A directed odd cycle transversal of a directed graph (digraph) $D$ is a vertex set $S$ that intersects every odd directed cycle of $D$. In the Directed Odd Cycle Transversal (DOCT) problem, the input consists of a digraph $D$ and an integer $k$. The
Paths $P_1,ldots,P_k$ in a graph $G=(V,E)$ are mutually induced if any two distinct $P_i$ and $P_j$ have neither common vertices nor adjacent vertices (except perhaps their end-vertices). The Induced Disjoint Paths problem is to decide if a graph $G$
A dynamic network ${cal N} = (G,c,tau,S)$ where $G=(V,E)$ is a graph, integers $tau(e)$ and $c(e)$ represent, for each edge $ein E$, the time required to traverse edge $e$ and its nonnegative capacity, and the set $Ssubseteq V$ is a set of sources. I
It is well known that Sparse PCA (Sparse Principal Component Analysis) is NP-hard to solve exactly on worst-case instances. What is the complexity of solving Sparse PCA approximately? Our contributions include: 1) a simple and efficient algorithm tha