ﻻ يوجد ملخص باللغة العربية
In 2012 Gu{a}vruc{t}a introduced the notions of $K$-frame and of atomic system for a linear bounded operator $K$ in a Hilbert space $mathcal{H}$, in order to decompose its range $mathcal{R}(K)$ with a frame-like expansion. In this article we revisit these concepts for an unbounded and densely defined operator $A:mathcal{D}(A)tomathcal{H}$ in two different ways. In one case we consider a non-Bessel sequence where the coefficient sequence depends continuously on $finmathcal{D}(A)$ with respect to the norm of $mathcal{H}$. In the other case we consider a Bessel sequence and the coefficient sequence depends continuously on $finmathcal{D}(A)$ with respect to the graph norm of $A$.
This paper is a contribution to frame theory. Frames in a Hilbert space are generalizations of orthonormal bases. In particular, Gabor frames of $L^2(mathbb{R})$, which are made of translations and modulations of one or more windows, are often used i
We introduce the concept of weak-localization for generalized frames and use this concept to define a class of weakly localized operators. This class contains many important operators, including: Short Time Fourier Transform multipliers, Calderon-Toe
We develop a natural generalization of vector-valued frame theory, we term operator-valued frame theory, using operator-algebraic methods. This extends work of the second author and D. Han which can be viewed as the multiplicity one case and extends
We derive necessary conditions for localization of continuous frames in terms of generalized Beurling densities. As an important application we provide necessary density conditions for sampling and interpolation in a very large class of reproducing kernel Hilbert spaces.
Fusion frame theory is an emerging mathematical theory that provides a natural framework for performing hierarchical data processing. A fusion frame is a frame-like collection of subspaces in a Hilbert space, thereby generalizing the concept of a fra