ترغب بنشر مسار تعليمي؟ اضغط هنا

Localized Frames and Compactness

122   0   0.0 ( 0 )
 نشر من قبل Mishko Mitkovski
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the concept of weak-localization for generalized frames and use this concept to define a class of weakly localized operators. This class contains many important operators, including: Short Time Fourier Transform multipliers, Calderon-Toeplitz operators, Toeplitz operators on various functions spaces, Anti-Wick operators, and many others. In this paper, we study the boundedness and compactness of weakly localized operators. In particular, we provide a characterization of compactness for weakly localized operators in terms of the behavior of their Berezin transform.

قيم البحث

اقرأ أيضاً

In 2012 Gu{a}vruc{t}a introduced the notions of $K$-frame and of atomic system for a linear bounded operator $K$ in a Hilbert space $mathcal{H}$, in order to decompose its range $mathcal{R}(K)$ with a frame-like expansion. In this article we revisit these concepts for an unbounded and densely defined operator $A:mathcal{D}(A)tomathcal{H}$ in two different ways. In one case we consider a non-Bessel sequence where the coefficient sequence depends continuously on $finmathcal{D}(A)$ with respect to the norm of $mathcal{H}$. In the other case we consider a Bessel sequence and the coefficient sequence depends continuously on $finmathcal{D}(A)$ with respect to the graph norm of $A$.
Fusion frame theory is an emerging mathematical theory that provides a natural framework for performing hierarchical data processing. A fusion frame is a frame-like collection of subspaces in a Hilbert space, thereby generalizing the concept of a fra me for signal representation. In this paper, we study the existence and construction of fusion frames. We first present a complete characterization of a special class of fusion frames, called Parseval fusion frames. The value of Parseval fusion frames is that the inverse fusion frame operator is equal to the identity and therefore signal reconstruction can be performed with minimal complexity. We then introduce two general methods -- the spatial complement and the Naimark complement -- for constructing a new fusion frame from a given fusion frame. We then establish existence conditions for fusion frames with desired properties. In particular, we address the following question: Given $M, N, m in NN$ and ${lambda_j}_{j=1}^M$, does there exist a fusion frame in $RR^M$ with $N$ subspaces of dimension $m$ for which ${lambda_j}_{j=1}^M$ are the eigenvalues of the associated fusion frame operator? We address this problem by providing an algorithm which computes such a fusion frame for almost any collection of parameters $M, N, m in NN$ and ${lambda_j}_{j=1}^M$. Moreover, we show how this procedure can be applied, if subspaces are to be added to a given fusion frame to force it to become Parseval.
85 - Victor Kaftal 2007
We develop a natural generalization of vector-valued frame theory, we term operator-valued frame theory, using operator-algebraic methods. This extends work of the second author and D. Han which can be viewed as the multiplicity one case and extends to higher multiplicity (e.g., multiframes) their dilation approach. We prove several results for operator-valued frames concerning their parametrization, duality, disjointeness, complementarity, and composition and the relationship between the two types of similarity (left and right) of such frames. We then apply these notions to prove that the collection of multiframe generators for the action of a discrete group on a Hilbert space is norm pathwise-connected precisely when the von Neumann algebra generated by the right representation of the group has no minimal projections. The proof is obtained by parametrizing this collection by a class of partial isometries in a larger von Neumann algebra. In the multiplicity one case this class reduces to the unitary class which is path-connected in norm, but in the infinite multiplicity case this class is path connected only in the strong operator topology and the proof depends on properties of tensor product slice maps.
87 - G.Corach , P. Massey , M.Ruiz 2013
Parseval frames have particularly useful properties, and in some cases, they can be used to reconstruct signals which were analyzed by a non-Parseval frame. In this paper, we completely describe the degree to which such reconstruction is feasible. In deed, notice that for fixed frames $cF$ and $cX$ with synthesis operators $F$ and $X$, the operator norm of $FX^*-I$ measures the (normalized) worst-case error in the reconstruction of vectors when analyzed with $cX$ and synthesized with $cF$. Hence, for any given frame $cF$, we compute explicitly the infimum of the operator norms of $FX^*-I$, where $cX$ is any Parseval frame. The $cX$s that minimize this quantity are called Parseval quasi-dual frames of $cF$. Our treatment considers both finite and infinite Parseval quasi-dual frames.
Given a locally compact abelian group $G$ and a closed subgroup $Lambda$ in $Gtimeswidehat{G}$, Rieffel associated to $Lambda$ a Hilbert $C^*$-module $mathcal{E}$, known as a Heisenberg module. He proved that $mathcal{E}$ is an equivalence bimodule b etween the twisted group $C^*$-algebra $C^*(Lambda,textsf{c})$ and $C^*(Lambda^circ,bar{textsf{c}})$, where $Lambda^{circ}$ denotes the adjoint subgroup of $Lambda$. Our main goal is to study Heisenberg modules using tools from time-frequency analysis and pointing out that Heisenberg modules provide the natural setting of the duality theory of Gabor systems. More concretely, we show that the Feichtinger algebra ${textbf{S}}_{0}(G)$ is an equivalence bimodule between the Banach subalgebras ${textbf{S}}_{0}(Lambda,textsf{c})$ and ${textbf{S}}_{0}(Lambda^{circ},bar{textsf{c}})$ of $C^*(Lambda,textsf{c})$ and $C^*(Lambda^circ,bar{textsf{c}})$, respectively. Further, we prove that ${textbf{S}}_{0}(G)$ is finitely generated and projective exactly for co-compact closed subgroups $Lambda$. In this case the generators $g_1,ldots,g_n$ of the left ${textbf{S}}_{0}(Lambda)$-module ${textbf{S}}_{0}(G)$ are the Gabor atoms of a multi-window Gabor frame for $L^2(G)$. We prove that this is equivalent to $g_1,ldots,g_n$ being a Gabor super frame for the closed subspace generated by the Gabor system for $Lambda^{circ}$. This duality principle is of independent interest and is also studied for infinitely many Gabor atoms. We also show that for any non-rational lattice $Lambda$ in $mathbb{R}^{2m}$ with volume ${s}(Lambda)<1$ there exists a Gabor frame generated by a single atom in ${textbf{S}}_{0}(mathbb{R}^m)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا