ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulence-Resistant All Optical Relaying Based on Few-Mode EDFA in Free-Space Optical Systems

86   0   0.0 ( 0 )
 نشر من قبل Shanyong Cai
 تاريخ النشر 2018
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the communication performance of a few-mode EDFA based all-optical relaying system for atmospheric channels in this paper. A dual-hop free space optical communication model based on the relay with two-mode EDFA is derived. The BER performance is numerically calculated. Compared with all-optical relaying system with single-mode EDFA, the power budget is increased by 4 dB, 7.5 dB and 11.5 dB at BER = 1E-4 under the refractive index structure constant Cn2 = 2E-14, 5E-14 and 1E-13 respectively when a few mode fiber supporting 4 modes is utilized as the receiving fiber at the destination. The optimal relay location is slightly backward from the middle of the link. The BER performance is the best when mode-dependent gain of FM-EDFA is zero.



قيم البحث

اقرأ أيضاً

Free-space communication links are severely affected by atmospheric turbulence, which causes degradation in the transmitted signal. One of the most common solutions to overcome this is to exploit diversity. In this approach, information is sent in pa rallel using two or more transmitters that are spatially separated, with each beam therefore experiencing different atmospheric turbulence, lowering the probability of a receive error. In this work we propose and experimentally demonstrate a generalization of diversity based on spatial modes of light, which we have termed $textit{modal diversity}$. We remove the need for a physical separation of the transmitters by exploiting the fact that spatial modes of light experience different perturbations, even when travelling along the same path. For this proof-of-principle we selected modes from the Hermite-Gaussian and Laguerre-Gaussian basis sets and demonstrate an improvement in Bit Error Rate by up to 54%. We outline that modal diversity enables physically compact and longer distance free space optical links without increasing the total transmit power.
93 - Yang Qi , Ben Wu 2021
We propose and experimentally demonstrate an interference management system that removes wideband wireless interference by using photonic signal processing and free space optical communication. The receiver separates radio frequency interferences by upconverting the mixed signals to optical frequencies and processing the signals with the photonic circuits. Signals with GHz bandwidth are processed and separated in real-time. The reference signals for interference cancellation are transmitted in a free space optical communication link, which provides large bandwidth for multi-band operation and accelerates the mixed signal separation process by reducing the dimensions of the un-known mixing matrix. Experimental results show that the system achieves 30dB real-time cancellation depth with over 6GHz bandwidth. Multiple radio frequency bands can be processed at the same time with a single system. In addition, multiple radio frequency bands can be processed at the same time with a single system.
Few-mode fiber is a significant component of free-space optical communication at the receiver to obtain achievable high coupling efficiency. A theoretical coupling model from the free-space optical communication link to a few-mode fiber is proposed b ased on a scale-adapted set of Laguerre-Gaussian modes. It is found that the coupling efficiency of various modes behaves differently in the presence of atmospheric turbulence or random jitter. Based on this model, the optimal coupling geometry parameter is obtained to maximize the coupling efficiency of the selected mode of few-mode fiber. The communication performance with random jitter is investigated. It is shown that the few-mode fiber has better bit-error rate performance than single-mode fiber, especially in high signal-to-noise ratio regimes.
Free-space optical (FSO) communications has the potential to revolutionize wireless communications due to its advantages of inherent security, high-directionality, high available bandwidth and small physical footprint. The effects of atmospheric turb ulence currently limit the performance of FSO communications. In this letter, we demonstrate a system capable of indiscriminately suppressing the atmospheric phase noise encountered by independent optical signals spread over a range of 7.2 THz (encompassing the full optical C-Band), by actively phase stabilizing a primary optical signal at 193.1 THz (1552 nm). We show ~30 dB of indiscriminate phase stabilization over the full range, down to average phase noise at 10 Hz of -39.6 dBc/Hz when using an acousto-optic modulator (AOM) as a Doppler actuator, and -39.9 dBc/Hz when using a fiber-stretcher as group-delay actuator to provide the phase-stabilization systems feedback. We demonstrate that this suppression is limited by the noise of the independent optical signals, and that the expected achievable suppression is more than 40 dB greater, reaching around -90 dB/Hz at 10 Hz. We conclude that 40 Tbps ground-to-space FSO transmission would be made possible with the combination of our stabilization system and other demonstrated technologies.
Single-mode or mode multiplexed free-space atmospheric optical channels draw increasingly more attention in the last decade. The scope of their possible applications spans from the compatibility with the telecom WDM technology, fiber amplifiers, and modal multiplexing for increasing the channel throughput to various quantum communication related primitives such as entanglement distribution, high-dimensional spatially encoded quantum key distribution, and relativistic quantum cryptography. Many research papers discuss application of specific mode sets, such as optical angular momentum modes, for communication in the presence of atmospheric turbulence. At the same time some basic properties and key relations for such channels exposed to the atmospheric turbulence have not been derived yet. In the current paper we present simple analytic expressions and a general framework for assessing probability density functions of channel transmittance as well as modal cross-talk coefficients. Under some basic assumptions the presented results can be directly used for estimation of the Fried parameter of the turbulent channel based on the measured statistics of the fundamental mode transmittance coefficient.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا