ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulence-induced optical loss and cross-talk in spatial mode multiplexed or single-mode free-space communication channels

65   0   0.0 ( 0 )
 نشر من قبل Konstantin Kravtsov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single-mode or mode multiplexed free-space atmospheric optical channels draw increasingly more attention in the last decade. The scope of their possible applications spans from the compatibility with the telecom WDM technology, fiber amplifiers, and modal multiplexing for increasing the channel throughput to various quantum communication related primitives such as entanglement distribution, high-dimensional spatially encoded quantum key distribution, and relativistic quantum cryptography. Many research papers discuss application of specific mode sets, such as optical angular momentum modes, for communication in the presence of atmospheric turbulence. At the same time some basic properties and key relations for such channels exposed to the atmospheric turbulence have not been derived yet. In the current paper we present simple analytic expressions and a general framework for assessing probability density functions of channel transmittance as well as modal cross-talk coefficients. Under some basic assumptions the presented results can be directly used for estimation of the Fried parameter of the turbulent channel based on the measured statistics of the fundamental mode transmittance coefficient.

قيم البحث

اقرأ أيضاً

Free-space communication links are severely affected by atmospheric turbulence, which causes degradation in the transmitted signal. One of the most common solutions to overcome this is to exploit diversity. In this approach, information is sent in pa rallel using two or more transmitters that are spatially separated, with each beam therefore experiencing different atmospheric turbulence, lowering the probability of a receive error. In this work we propose and experimentally demonstrate a generalization of diversity based on spatial modes of light, which we have termed $textit{modal diversity}$. We remove the need for a physical separation of the transmitters by exploiting the fact that spatial modes of light experience different perturbations, even when travelling along the same path. For this proof-of-principle we selected modes from the Hermite-Gaussian and Laguerre-Gaussian basis sets and demonstrate an improvement in Bit Error Rate by up to 54%. We outline that modal diversity enables physically compact and longer distance free space optical links without increasing the total transmit power.
Few-mode fiber is a significant component of free-space optical communication at the receiver to obtain achievable high coupling efficiency. A theoretical coupling model from the free-space optical communication link to a few-mode fiber is proposed b ased on a scale-adapted set of Laguerre-Gaussian modes. It is found that the coupling efficiency of various modes behaves differently in the presence of atmospheric turbulence or random jitter. Based on this model, the optimal coupling geometry parameter is obtained to maximize the coupling efficiency of the selected mode of few-mode fiber. The communication performance with random jitter is investigated. It is shown that the few-mode fiber has better bit-error rate performance than single-mode fiber, especially in high signal-to-noise ratio regimes.
We demonastrate experimental technique for generating spatially single-mode broadband biphoton field. The method is based on dispersive optical element which precisely tailors the structure of type-I SPDC frequency angular spectrum in order to shift different spectral components to a single angular mode. Spatial mode filtering is realized by coupling biphotons into a single-mode optical fiber.
As the generation of squeezed states of light has become a standard technique in laboratories, attention is increasingly directed towards adapting the optical parameters of squeezed beams to the specific requirements of individual applications. It is known that imaging, metrology, and quantum information may benefit from using squeezed light with a tailored transverse spatial mode. However, experiments have so far been limited to generating only a few squeezed spatial modes within a given setup. Here, we present the generation of single-mode squeezing in Laguerre-Gauss and Bessel-Gauss modes, as well as an arbitrary intensity pattern, all from a single setup using a spatial light modulator (SLM). The degree of squeezing obtained is limited mainly by the initial squeezing and diffractive losses introduced by the SLM, while no excess noise from the SLM is detectable at the measured sideband. The experiment illustrates the single-mode concept in quantum optics and demonstrates the viability of current SLMs as flexible tools for the spatial reshaping of squeezed light.
We investigate the communication performance of a few-mode EDFA based all-optical relaying system for atmospheric channels in this paper. A dual-hop free space optical communication model based on the relay with two-mode EDFA is derived. The BER perf ormance is numerically calculated. Compared with all-optical relaying system with single-mode EDFA, the power budget is increased by 4 dB, 7.5 dB and 11.5 dB at BER = 1E-4 under the refractive index structure constant Cn2 = 2E-14, 5E-14 and 1E-13 respectively when a few mode fiber supporting 4 modes is utilized as the receiving fiber at the destination. The optimal relay location is slightly backward from the middle of the link. The BER performance is the best when mode-dependent gain of FM-EDFA is zero.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا