ﻻ يوجد ملخص باللغة العربية
Double-differential cross sections for light-ion (p, d, t, He-3 and alpha) production in oxygen, induced by 96 MeV neutrons are reported. Energy spectra are measured at eight laboratory angles from 20 degrees to 160 degrees in steps of 20 degrees. Procedures for data taking and data reduction are presented. Deduced energy-differential and production cross sections are reported. Experimental cross sections are compared to theoretical reaction model calculations and experimental data at lower neutron energies in the literature. The measured proton data agree reasonably well with the results of the model calculations, whereas the agreement for the other particles is less convincing. The measured production cross sections for protons, deuterons, tritons and alpha particles support the trends suggested by data at lower energies.
Double-differential cross sections for light-ion (p, d, t, 3He and alpha) production in carbon induced by 96 MeV neutrons have been measured at eight laboratory angles from 20 degrees to 160 degrees in steps of 20 degrees. Experimental techniques are
Double-differential cross sections for light-ion (p, d, t, He-3 and alpha) production in silicon, induced by 96 MeV neutrons are reported. Energy spectra are measured at eight laboratory angles, ranging from 20 degrees to 160 degrees in steps of 20 d
Nuclear data for neutron-induced reactions in the intermediate energy range of 20 to 200 MeV are of great importance for the development of nuclear reaction codes since little data exist in that range. Also several different applications benefit from
We have measured double-differential cross sections in the interaction of 175 MeV quasimonoenergetic neutrons with O, Si, Fe and Bi. We have compared these results with model calculations with INCL4.5-Abla07, MCNP6 and TALYS-1.2. We have also compare
We calculate the cross section of the gamma-ray production from neutral-current neutrino-oxygen quasi-elastic interaction, $ u+^{16}O rightarrow u +p+^{15}N*$, or $ u+^{16}O rightarrow u+n+^{15}O*$, in which the residual nuclei (15N* or 15O*) lead