ﻻ يوجد ملخص باللغة العربية
In the window mean-payoff objective, given an infinite path, instead of considering a long run average, we consider the minimum payoff that can be ensured at every position of the path over a finite window that slides over the entire path. Chatterjee et al. studied the problem to decide if in a two-player game, Player 1 has a strategy to ensure a window mean-payoff of at least 0. In this work, we consider a function that given a path returns the supremum value of the window mean-payoff that can be ensured over the path and we show how to compute its expected value in Markov chains and Markov decision processes. We consider two variants of the function: Fixed window mean-payoff in which a fixed window length $l_{max}$ is provided; and Bounded window mean-payoff in which we compute the maximum possible value of the window mean-payoff over all possible window lengths. Further, for both variants, we consider (i) a direct version of the problem where for each path, the payoff that can be ensured from its very beginning and (ii) a non-direct version that is the prefix independent counterpart of the direct version of the problem.
Mean-payoff games on timed automata are played on the infinite weighted graph of configurations of priced timed automata between two players, Player Min and Player Max, by moving a token along the states of the graph to form an infinite run. The goal
We examine perfect information stochastic mean-payoff games - a class of games containing as special sub-classes the usual mean-payoff games and parity games. We show that deterministic memoryless strategies that are optimal for discounted games with
In a mean-payoff parity game, one of the two players aims both to achieve a qualitative parity objective and to minimize a quantitative long-term average of payoffs (aka. mean payoff). The game is zero-sum and hence the aim of the other player is to
We discuss the tropical analogues of several basic questions of convex duality. In particular, the polar of a tropical polyhedral cone represents the set of linear inequalities that its elements satisfy. We characterize the extreme rays of the polar
Tropical polyhedra have been recently used to represent disjunctive invariants in static analysis. To handle larger instances, tropical analogues of classical linear programming results need to be developed. This motivation leads us to study the trop