ترغب بنشر مسار تعليمي؟ اضغط هنا

Sheets, filaments and clumps - high resolution simulations of how the thermal instability can form molecular clouds

614   0   0.0 ( 0 )
 نشر من قبل Christopher Wareing
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes 3D simulations of the formation of collapsing cold clumps via thermal instability inside a larger cloud complex. The initial condition was a diffuse atomic, stationary, thermally unstable, 200pc diameter spherical cloud in pressure equilibrium with low density surroundings. This was seeded with 10% density perturbations at the finest initial grid level (0.29pc) around n_H = 1.1cm^{-3} and evolved with self-gravity included. No magnetic field was imposed. Resimulations at a higher resolution of a region extracted from this simulation (down to 0.039pc), show that the thermal instability forms sheets, then filaments and finally clumps. The width of the filaments increases over time, in one particular case from 0.26 to 0.56pc. Thereafter clumps with sizes of around 5pc grow at the intersections of filaments. 21 distinct clumps, with properties similar to those observed in molecular clouds, are found by using the FellWalker algorithm to find minima in the gravitational potential. Not all of these are gravitationally bound, but the convergent nature of the flow and increasing central density suggest they are likely to form stars. Further simulation of the most massive clump shows the gravitational collapse to a density >10^6 cm^{-3}. These results provide realistic initial conditions that can be used to study feedback in individual clumps, interacting clumps and the entire molecular cloud complex.

قيم البحث

اقرأ أيضاً

We examine the proposal that the HI high-velocity clouds (HVCs) surrounding the Milky Way and other disc galaxies form by condensation of the hot galactic corona via thermal instability. Under the assumption that the galactic corona is well represent ed by a non-rotating, stratified atmosphere, we find that for this formation mechanism to work the corona must have an almost perfectly flat entropy profile. In all other cases the growth of thermal perturbations is suppressed by a combination of buoyancy and thermal conduction. Even if the entropy profile were nearly flat, cold clouds with sizes smaller than 10 kpc could form in the corona of the Milky Way only at radii larger than 100 kpc, in contradiction with the determined distances of the largest HVC complexes. Clouds with sizes of a few kpc can form in the inner halo only in low-mass systems. We conclude that unless even slow rotation qualitatively changes the dynamics of a corona, thermal instability is unlikely to be a viable mechanism for formation of cold clouds around disc galaxies.
The MHD version of the adaptive mesh refinement (AMR) code, MG, has been employed to study the interaction of thermal instability, magnetic fields and gravity through 3D simulations of the formation of collapsing cold clumps on the scale of a few par secs, inside a larger molecular cloud. The diffuse atomic initial condition consists of a stationary, thermally unstable, spherical cloud in pressure equilibrium with lower density surroundings and threaded by a uniform magnetic field. This cloud was seeded with 10% density perturbations at the finest initial grid level around n=1.1 cm^{-3} and evolved with self-gravity included from the outset. Several cloud diameters were considered (100 pc, 200 pc and 400 pc) equating to several cloud masses (17,000 Msun, 136,000 Msun and 1.1x10^6 Msun). Low-density magnetic-field-aligned striations were observed as the clouds collapse along the field lines into disc-like structures. The induced flow along field lines leads to oscillations of the sheet about the gravitational minimum and an integral-shaped appearance. When magnetically supercritical, the clouds then collapse and generate hourglass magnetic field configurations with strongly intensified magnetic fields, reproducing observational behaviour. Resimulation of a region of the highest mass cloud at higher resolution forms gravitationally-bound collapsing clumps within the sheet that contain clump-frame supersonic (M~5) and super-Alfvenic (M_A~4) velocities. Observationally realistic density and velocity power spectra of the cloud and densest clump are obtained. Future work will use these realistic initial conditions to study individual star and cluster feedback.
We have studied the filaments extracted from the column density maps of the nearby Lupus 1, 3, and 4 molecular clouds, derived from photometric maps observed with the Herschel satellite. Filaments in the Lupus clouds have quite low column densities, with a median value of $sim$1.5$times$10$^{21}$ cm$^{-2}$ and most have masses per unit length lower than the maximum critical value for radial gravitational collapse. Indeed, no evidence of filament contraction has been seen in the gas kinematics. We find that some filaments, that on average are thermally subcritical, contain dense cores that may eventually form stars. This is an indication that in the low column density regime, the critical condition for the formation of stars may be reached only locally and this condition is not a global property of the filament. Finally, in Lupus we find multiple observational evidences of the key role that the magnetic field plays in forming filaments, and determining their confinement and dynamical evolution.
We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much larger than the average Jeans mass. Thus, the collapse soon becomes nearly pressureless, proceeding along its shortest dimension first. This naturally produces filaments in the cloud, and clumps within the filaments. The filaments are not in equilibrium at any time, but instead are long-lived flow features, through which the gas flows from the cloud to the clumps. The filaments are long-lived because they accrete from their environment while simultaneously accreting onto the clumps within them; they are essentially the locus where the flow changes from accreting in two dimensions to accreting in one dimension. Moreover, the clumps also exhibit a hierarchical nature: the gas in a filament flows onto a main, central clump, but other, smaller-scale clumps form along the infalling gas. Correspondingly, the velocity along the filament exhibits a hierarchy of jumps at the locations of the clumps. Two prominent filaments in the simulation have lengths ~15 pc, and masses ~600 Msun above density n ~ 10^3 cm-3 (~2x10^3 Msun at n > 50 cm-3). The density profile exhibits a central flattened core of size ~0.3 pc and an envelope that decays as r^-2.5, in reasonable agreement with observations. Accretion onto the filament reaches a maximum linear density rate of ~30 Msun Myr^-1 pc^-1.
Under the assumptions that molecular clouds are nearly spatially and temporally isothermal and that the density peaks (``cores) within them are formed by turbulent fluctuations, we argue that cores cannot reach a hydrostatic (or magneto-static) state as a consequence of their formation process. In the non-magnetic case, stabilization requires a Bonnor-Ebert truncation at a finite radius, which is not feasible for a single-temperature flow, unless it amounts to a shock, which is clearly a dynamical feature. Instead, in this case, cores must be dynamical entities that can either be pushed into collapse, or else ``rebound towards the mean pressure and density as the parent cloud. Nevertheless, rebounding cores are delayed in their re-expansion by their own self-gravity. We give a crude estimate for the re-expansion time as a function of the closeness of the final compression state to the threshold of instability, finding typical values $sim 1$ Myr, i.e., of the order of a few free-fall times. Our results support the notion that not all cores observed in molecular clouds need to be on route to forming stars, but that instead a class of ``failed cores should exist, which must eventually re-expand and disperse, and which can be identified with observed starless cores. In the magnetic case, recent observational and theoretical work suggests that all cores are critical or supercritical, and are thus qualitatively equivalent to the non-magnetic case. Our results support the notion that the entire star formation process is dynamical, with no intermediate hydrostatic stages.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا