ترغب بنشر مسار تعليمي؟ اضغط هنا

Do high-velocity clouds form by thermal instability?

92   0   0.0 ( 0 )
 نشر من قبل Carlo Nipoti
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the proposal that the HI high-velocity clouds (HVCs) surrounding the Milky Way and other disc galaxies form by condensation of the hot galactic corona via thermal instability. Under the assumption that the galactic corona is well represented by a non-rotating, stratified atmosphere, we find that for this formation mechanism to work the corona must have an almost perfectly flat entropy profile. In all other cases the growth of thermal perturbations is suppressed by a combination of buoyancy and thermal conduction. Even if the entropy profile were nearly flat, cold clouds with sizes smaller than 10 kpc could form in the corona of the Milky Way only at radii larger than 100 kpc, in contradiction with the determined distances of the largest HVC complexes. Clouds with sizes of a few kpc can form in the inner halo only in low-mass systems. We conclude that unless even slow rotation qualitatively changes the dynamics of a corona, thermal instability is unlikely to be a viable mechanism for formation of cold clouds around disc galaxies.

قيم البحث

اقرأ أيضاً

This paper describes 3D simulations of the formation of collapsing cold clumps via thermal instability inside a larger cloud complex. The initial condition was a diffuse atomic, stationary, thermally unstable, 200pc diameter spherical cloud in pressu re equilibrium with low density surroundings. This was seeded with 10% density perturbations at the finest initial grid level (0.29pc) around n_H = 1.1cm^{-3} and evolved with self-gravity included. No magnetic field was imposed. Resimulations at a higher resolution of a region extracted from this simulation (down to 0.039pc), show that the thermal instability forms sheets, then filaments and finally clumps. The width of the filaments increases over time, in one particular case from 0.26 to 0.56pc. Thereafter clumps with sizes of around 5pc grow at the intersections of filaments. 21 distinct clumps, with properties similar to those observed in molecular clouds, are found by using the FellWalker algorithm to find minima in the gravitational potential. Not all of these are gravitationally bound, but the convergent nature of the flow and increasing central density suggest they are likely to form stars. Further simulation of the most massive clump shows the gravitational collapse to a density >10^6 cm^{-3}. These results provide realistic initial conditions that can be used to study feedback in individual clumps, interacting clumps and the entire molecular cloud complex.
115 - David B. Henley 2012
In order to determine if the material ablated from high-velocity clouds (HVCs) is a significant source of low-velocity high ions (C IV, N V, and O VI) such as those found in the Galactic halo, we simulate the hydrodynamics of the gas and the time-dep endent ionization evolution of its carbon, nitrogen, and oxygen ions. Our suite of simulations examines the ablation of warm material from clouds of various sizes, densities, and velocities as they pass through the hot Galactic halo. The ablated material mixes with the environmental gas, producing an intermediate-temperature mixture that is rich in high ions and that slows to the speed of the surrounding gas. We find that the slow mixed material is a significant source of the low-velocity O VI that is observed in the halo, as it can account for at least ~1/3 of the observed O VI column density. Hence, any complete model of the high ions in the halo should include the contribution to the O VI from ablated HVC material. However, such material is unlikely to be a major source of the observed C IV, presumably because the observed C IV is affected by photoionization, which our models do not include. We discuss a composite model that includes contributions from HVCs, supernova remnants, a cooling Galactic fountain, and photoionization by an external radiation field. By design, this model matches the observed O VI column density. This model can also account for most or all of the observed C IV, but only half of the observed N V.
124 - Brad K. Gibson 2000
Tantalizing evidence has been presented supporting the suggestion that a large population of extragalactic gas clouds permeates the Local Group, a population which has been associated with the Galactic High-Velocity Clouds (HVCs). We comment on both the strengths and weaknesses of this suggestion, informally referred to as the Blitz/Spergel picture. Theoretical predictions for the spatial and kinematic distributions, metallicities, distances, and emission properties of Blitz/Spergel HVCs will be confronted with extant observational data.
We present hydrodynamic simulations of high-velocity clouds (HVCs) traveling through the hot, tenuous medium in the Galactic halo. A suite of models was created using the FLASH hydrodynamics code, sampling various cloud sizes, densities, and velociti es. In all cases, the cloud-halo interaction ablates material from the clouds. The ablated material falls behind the clouds, where it mixes with the ambient medium to produce intermediate-temperature gas, some of which radiatively cools to less than 10,000 K. Using a non-equilibrium ionization (NEI) algorithm, we track the ionization levels of carbon, nitrogen, and oxygen in the gas throughout the simulation period. We present observation-related predictions, including the expected H I and high ion (C IV, N V, and O VI) column densities on sight lines through the clouds as functions of evolutionary time and off-center distance. The predicted column densities overlap those observed for Complex C. The observations are best matched by clouds that have interacted with the Galactic environment for tens to hundreds of megayears. Given the large distances across which the clouds would travel during such time, our results are consistent with Complex C having an extragalactic origin. The destruction of HVCs is also of interest; the smallest cloud (initial mass approx 120 Msun) lost most of its mass during the simulation period (60 Myr), while the largest cloud (initial mass approx 4e5 Msun) remained largely intact, although deformed, during its simulation period (240 Myr).
We present a proof-of-concept study of a method to estimate the inclination angle of compact high velocity clouds (CHVCs), i.e. the angle between a CHVCs trajectory and the line-of-sight. The inclination angle is derived from the CHVCs morphology and kinematics. We calibrate the method with numerical simulations, and we apply it to a sample of CHVCs drawn from HIPASS. Implications for CHVC distances are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا