ﻻ يوجد ملخص باللغة العربية
We study the local equilibrium properties of two-dimensional electron gases at high magnetic fields in the presence of random smooth electrostatic disorder, Rashba spin-orbit coupling, and the Zeeman interaction. Using a systematic magnetic length ($l_B$) expansion within a Greens function framework we derive quantum functionals for the local spin-resolved particle and current densities which can be useful for future studies combining disorder and mean-field electron-electron interaction in the quantum Hall regime. We point out that the spin polarization presents a peculiar spatial dependence which can be used to determine the strength of the Rashba coupling by local probes. The spatial structure of the current density, consisting of both compressible and incompressible contributions, also essentially reflects the effects of Rashba spin-orbit interaction on the energy spectrum. We show that in the semiclassical limit $l_B rightarrow 0$ the local Hall conductivity remains, however, still quantized in units of $e^2/h$ for any finite strength of the spin-orbit interaction. In contrast, it becomes half-integer quantized when the latter is infinite, a situation which corresponds to a disordered topological insulator surface consisting of a single Dirac cone. Finally, we argue how to define at high magnetic fields a spin Hall conductivity related to a dissipationless angular momentum flow, which is characterized by a sequence of plateaus as a function of the inverse magnetic field (thus free of resonances).
We show theoretically that conversion between spin and charge by spin-orbit interaction in metals occurs even in a non-local setup where magnetization and spin-orbit interaction are spatially separated if electron diffusion is taken into account. Cal
We use microscopic linear response theory to derive a set of equations that provide a complete description of coupled spin and charge diffusive transport in a two-dimensional electron gas (2DEG) with the Rashba spin-orbit (SO) interaction. These equa
We have experimentally studied the spin-induced time reversal symmetry (TRS) breaking as a function of the relative strength of the Zeeman energy (E_Z) and the Rashba spin-orbit interaction energy (E_SOI), in InGaAs-based 2D electron gases. We find t
We consider a Rashba nanowire with proximity gap which can be brought into the topological phase by tuning external magnetic field or chemical potential. We study spin and charge of the bulk quasiparticle states when passing through the topological t
We study numerically the charge conductance distributions of disordered quantum spin-Hall (QSH) systems using a quantum network model. We have found that the conductance distribution at the metal-QSH insulator transition is clearly different from tha