ترغب بنشر مسار تعليمي؟ اضغط هنا

Type I Abelian Higgs strings: evolution and Cosmic Microwave Background constraints

116   0   0.0 ( 0 )
 نشر من قبل Joanes Lizarraga
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from the first simulations of networks of Type I Abelian Higgs cosmic strings to include both matter and radiation eras and Cosmic Microwave Background (CMB) constraints. In Type I strings, the string tension is a slowly decreasing function of the ratio of the scalar and gauge mass-squared, $beta$. We find that the mean string separation shows no dependence on $beta$, and that the energy-momentum tensor correlators decrease approximately in proportion to the square of the string tension, with additional O(1) correction factors which asymptote to constants below $beta lesssim 0.01$. Strings in models with low self-couplings can therefore satisfy current CMB bounds at higher symmetry-breaking scales. This is particularly relevant for models where the gauge symmetry is broken in a supersymmetric flat direction, for which the effective self-coupling can be extremely small. If our results can be extrapolated to $beta simeq 10^{-15}$, even strings formed at $10^{16}$ GeV (approximately the grand unification scale in supersymmetric extensions of the Standard Model) can be compatible with CMB constraints.

قيم البحث

اقرأ أيضاً

We present cosmic microwave background (CMB) power spectra from recent numerical simulations of cosmic strings in the Abelian Higgs model and compare them to CMB power spectra measured by Planck. We obtain revised constraints on the cosmic string ten sion parameter $Gmu$. For example, in the $Lambda$CDM model with the addition of strings and no primordial tensor perturbations, we find $Gmu < 2.0 times 10^{-7}$ at 95% confidence, about 20% lower than the value obtained from previous simulations, which had 1/64 of the spatial volume. We investigate the source of the difference, showing that the main cause is an improved treatment of the string evolution across the radiation-matter transition. The increased computational volume also makes possible to simulate fully the physical equations of motion, in which the string cores shrink in comoving coordinates. This, and the larger dynamic range, changes the amplitude of the power spectra by only about 10%, demonstrating that field theory simulations of cosmic strings have now reached the required dynamic range for CMB calculations.
We investigate the cosmological and astrophysical constraints on superconducting cosmic strings (SCSs). SCS loops emit strong bursts of electromagnetic waves, which might affect various cosmological and astrophysical observations. We take into accoun t the effect on the CMB anisotropy, CMB blackbody spectrum, BBN, observational implications on radio wave burst and X-ray or gamma-ray events, and stochastic gravitational wave background measured by pulsar timing experiments. We then derive constraints on the parameters of SCS from current observations and estimate prospects for detecting SCS signatures in on-going observations. As a result, we find that these constraints exclude broad parameter regions, and also that on-going radio wave observations can probe large parameter space.
We study how the presence of world-sheet currents affects the evolution of cosmic string networks, and their impact on predictions for the cosmic microwave background (CMB) anisotropies generated by these networks. We provide a general description of string networks with currents and explicitly investigate in detail two physically motivated examples: wiggly and superconducting cosmic string networks. By using a modified version of the CMBact code, we show quantitatively how the relevant network parameters in both of these cases influence the predicted CMB signal. Our analysis suggests that previous studies have overestimated the amplitude of the anisotropies for wiggly strings. For superconducting strings the amplitude of the anisotropies depends on parameters which presently are not well known - but which can be measured in future high-resolution numerical simulations.
Cosmic string networks generate cosmological perturbations actively throughout the history of the universe. Thus, the string sourced anisotropy of the cosmic microwave background is not affected by Silk damping as much as the anisotropy seeded by inf lation. The spectrum of perturbations generated by strings does not match the observed CMB spectrum on large angular scales (l<1000) and is bounded to contribute no more than 10% of the total power on those scales. However, when this bound is marginally saturated, the anisotropy created by cosmic strings on small angular scales l>2000 will dominate over that created by the primary inflationary perturbations. This range of angular scales in the CMB is presently being measured by a number of experiments; their results will test this prediction of cosmic string networks soon.
Secret contact interactions among eV sterile neutrinos, mediated by a massive gauge boson $X$ (with $M_X ll M_W$), and characterized by a gauge coupling $g_X$, have been proposed as a mean to reconcile cosmological observations and short-baseline lab oratory anomalies. We constrain this scenario using the latest Planck data on Cosmic Microwave Background anisotropies, and measurements of baryon acoustic oscillations (BAO). We consistently include the effect of secret interactions on cosmological perturbations, namely the increased density and pressure fluctuations in the neutrino fluid, and still find a severe tension between the secret interaction framework and cosmology. In fact, taking into account neutrino scattering via secret interactions, we derive our own mass bound on sterile neutrinos and find (at 95% CL) $m_s < 0.82$ eV or $m_s < 0.29$ eV from Planck alone or in combination with BAO, respectively. These limits confirm the discrepancy with the laboratory anomalies. Moreover, we constrain, in the limit of contact interaction, the effective strength $G_X$ to be $ < 2.8 (2.0) times 10^{10},G_F$ from Planck (Planck+BAO). This result, together with the mass bound, strongly disfavours the region with $M_X sim 0.1$ MeV and relatively large coupling $g_Xsim 10^{-1}$, previously indicated as a possible solution to the small scale dark matter problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا