ترغب بنشر مسار تعليمي؟ اضغط هنا

Predictions of the pseudo-complex theory of Gravity for EHT observations- II. Theory and predictions

106   0   0.0 ( 0 )
 نشر من قبل Thomas Boller
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a resume on the modified theory of gravity, called pseudo-complex General Relativity (pc-GR). It is the second in a series of papers, where the first one (Boller et al. 2019, referred to as paper I) discussed the observational consequences of pc-GR. In this paper, we concentrate on the underlying theory. PC-GR involves an algebraic extension of the standard theory of GR and it depends on two phenomenological parameters. An element included in pc-GR that is not present in standard GR is the energy-momentum tensor corresponding to an anisotropic ideal fluid, which we call dark energy. The two parameters are related to the coupling of mass to the dark energy and its fall-off as a function of r. The consequences and predictions of this theory will be discussed in the context of the observational results of the Even Horizon Telescope, expected soon. Our main result is that due to the accumulation of dark energy near a large mass, the modified theory predicts a dark ring followed by a bright ring in the emission profile of the accretion disc. We also discuss the light ring in the equatorial plane.



قيم البحث

اقرأ أيضاً

A modified theory of gravity, avoiding singularities in the standard theory of gravitation, has been developed by Hess & Greiner, known as the pseudo-complex theory of gravitation. The pc-GR theory shows remarkable observational differences with resp ect to standard GR. The intensity profiles are significantly different between both theories, which is a rare phenomenon in astrophysics. This will allow robust tests of both theories using Event Horizon Telescope (EHT) observations of the Galactic Center. We also predict the time evolution of orbiting matter. In this paper we summarize the observational tests we have developed to date. The theory is described in the second paper of this series (Hess et al. 2019, referred to as paper II hereafter).
Shortly after its discovery, General Relativity (GR) was applied to predict the behavior of our Universe on the largest scales, and later became the foundation of modern cosmology. Its validity has been verified on a range of scales and environments from the Solar system to merging black holes. However, experimental confirmations of GR on cosmological scales have so far lacked the accuracy one would hope for -- its applications on those scales being largely based on extrapolation and its validity sometimes questioned in the shadow of the unexpected cosmic acceleration. Future astronomical instruments surveying the distribution and evolution of galaxies over substantial portions of the observable Universe, such as the Dark Energy Spectroscopic Instrument (DESI), will be able to measure the fingerprints of gravity and their statistical power will allow strong constraints on alternatives to GR. In this paper, based on a set of $N$-body simulations and mock galaxy catalogs, we study the predictions of a number of traditional and novel estimators beyond linear redshift distortions in two well-studied modified gravity models, chameleon $f(R)$ gravity and a braneworld model, and the potential of testing these deviations from GR using DESI. These estimators employ a wide array of statistical properties of the galaxy and the underlying dark matter field, including two-point and higher-order statistics, environmental dependence, redshift space distortions and weak lensing. We find that they hold promising power for testing GR to unprecedented precision. The major future challenge is to make realistic, simulation-based mock galaxy catalogs for both GR and alternative models to fully exploit the statistic power of the DESI survey and to better understand the impact of key systematic effects. Using these, we identify future simulation and analysis needs for gravity tests using DESI.
We consider realizations of GUT models in F-theory. Adopting a bottom up approach, the assumption that the dynamics of the GUT model can in principle decouple from Planck scale physics leads to a surprisingly predictive framework. An internal U(1) hy percharge flux Higgses the GUT group directly to the MSSM or to a flipped GUT model, a mechanism unavailable in heterotic models. This new ingredient automatically addresses a number of puzzles present in traditional GUT models. The internal U(1) hyperflux allows us to solve the doublet-triplet splitting problem, and explains the qualitative features of the distorted GUT mass relations for lighter generations due to the Aharanov-Bohm effect. These models typically come with nearly exact global symmetries which prevent bare mu terms and also forbid dangerous baryon number violating operators. Strong curvature around our brane leads to a repulsion mechanism for Landau wave functions for neutral fields. This leads to large hierarchies of the form exp(-c/B^(2*g)) where c and g are order one parameters and B ~ M_(GUT)/(M_(pl)*alpha_(GUT)). This effect can simultaneously generate a viably small mu term as well as an acceptable Dirac neutrino mass on the order of 0.5 * 10^(-2 +/- 0.5) eV. In another scenario, we find a modified seesaw mechanism which predicts that the light neutrinos have masses in the expected range while the Majorana mass term for the heavy neutrinos is ~ 3 * 10^(12 +/- 1.5) GeV. Communicating supersymmetry breaking to the MSSM can be elegantly realized through gauge mediation. In one scenario, the same repulsion mechanism also leads to messenger masses which are naturally much lighter than the GUT scale.
We examine the implications of a recently proposed theory of fermion masses and mixings in which an $A_4$ family symmetry emerges from orbifold compactification. We analyse two variant schemes concerning their predictions for neutrino oscillations, n eutrinoless double-beta decay and the golden quark-lepton unification mass relation. We find that upcoming experiments DUNE as well as LEGEND and nEXO offer good chances of exploring a substantial region of neutrino parameters.
341 - Wei Zhu 2014
We conduct the first microlensing simulation in the context of planet formation model. The planet population is taken from the Ida & Lin core accretion model for $0.3M_odot$ stars. With $6690$ microlensing events, we find for a simplified Korea Micro lensing Telescopes Network (KMTNet) the fraction of planetary events is $2.9%$ , out of which $5.5%$ show multiple-planet signatures. The number of super-Earths, super-Neptunes and super-Jupiters detected are expected to be almost equal. Our simulation shows that high-magnification events and massive planets are favored by planet detections, which is consistent with previous expectation. However, we notice that extremely high-magnification events are less sensitive to planets, which is possibly because the 10 min sampling of KMTNet is not intensive enough to capture the subtle anomalies that occur near the peak. This suggests that while KMTNet observations can be systematically analyzed without reference to any follow-up data, follow-up observations will be essential in extracting the full science potential of very high-magnification events. The uniformly high-cadence observations expected for KMTNet also result in $sim 55%$ of all detected planets being non-caustic-crossing, and more low-mass planets even down to Mars-mass being detected via planetary caustics. We also find that the distributions of orbital inclinations and planet mass ratios in multiple-planet events agree with the intrinsic distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا