ﻻ يوجد ملخص باللغة العربية
We introduce the notion of hereditary G-compactness (with respect to interpretation). We provide a sufficient condition for a poset to not be hereditarily G-compact, which we use to show that any linear order is not hereditarily G-compact. Assuming that a long-standing conjecture about unstable NIP theories holds, this implies that an NIP theory is hereditarily G-compact if and only if it is stable (and by a result of Simon, this holds unconditionally for $aleph_0$-categorical theories). We show that if $G$ is definable over $A$ in a hereditarily G-compact theory, then $G^{00}_A=G^{000}_A$. We also include a brief survey of sufficient conditions for G-compactness, with particular focus on those which can be used to prove or disprove hereditary G-compactness for some (classes of) theories.
We investigate the statement the order topology of every countable complete linear order is compact in the framework of reverse mathematics, and we find that the statements strength depends on the precise formulation of compactness. If we require tha
Let G be a definably compact group in an o-minimal expansion of a real closed field. We prove that if dim(G X) < dim G for some definable X subset of G then X contains a torsion point of G. Along the way we develop a general theory for so-called G-li
We discuss some recent developments in the theory of abelian model categories. The emphasis is on the hereditary condition and applications to homotopy categories of chain complexes and stable module categories.
We investigate the parameterized complexity of finding subgraphs with hereditary properties on graphs belonging to a hereditary graph class. Given a graph $G$, a non-trivial hereditary property $Pi$ and an integer parameter $k$, the general problem $
In this article we construct a categorical resolution of singularities of an excellent reduced curve $X$, introducing a certain sheaf of orders on $X$. This categorical resolution is shown to be a recollement of the derived category of coherent sheav