ﻻ يوجد ملخص باللغة العربية
Numerical relativity (NR) simulations provide the most accurate binary black hole gravitational waveforms, but are prohibitively expensive for applications such as parameter estimation. Surrogate models of NR waveforms have been shown to be both fast and accurate. However, NR-based surrogate models are limited by the training waveforms length, which is typically about 20 orbits before merger. We remedy this by hybridizing the NR waveforms using both post-Newtonian and effective one body waveforms for the early inspiral. We present NRHybSur3dq8, a surrogate model for hybridized nonprecessing numerical relativity waveforms, that is valid for the entire LIGO band (starting at $20~text{Hz}$) for stellar mass binaries with total masses as low as $2.25,M_{odot}$. We include the $ell leq 4$ and $(5,5)$ spin-weighted spherical harmonic modes but not the $(4,1)$ or $(4,0)$ modes. This model has been trained against hybridized waveforms based on 104 NR waveforms with mass ratios $qleq8$, and $|chi_{1z}|,|chi_{2z}| leq 0.8$, where $chi_{1z}$ ($chi_{2z}$) is the spin of the heavier (lighter) BH in the direction of orbital angular momentum. The surrogate reproduces the hybrid waveforms accurately, with mismatches $lesssim 3times10^{-4}$ over the mass range $2.25M_{odot} leq M leq 300 M_{odot}$. At high masses ($Mgtrsim40M_{odot}$), where the merger and ringdown are more prominent, we show roughly two orders of magnitude improvement over existing waveform models. We also show that the surrogate works well even when extrapolated outside its training parameter space range, including at spins as large as 0.998. Finally, we show that this model accurately reproduces the spheroidal-spherical mode mixing present in the NR ringdown signal.
A generic, non-eccentric binary black hole (BBH) system emits gravitational waves (GWs) that are completely described by 7 intrinsic parameters: the black hole spin vectors and the ratio of their masses. Simulating a BBH coalescence by solving Einste
Gravitational waves (GW) from coalescing stellar-mass black hole binaries (BBH) are expected to be detected by the Advanced Laser Interferometer Gravitational-wave Observatory and Advanced Virgo. Detection searches operate by matched-filtering the de
The accurate modeling of gravitational radiation is a key issue for gravitational wave astronomy. As simulation codes reach higher accuracy, systematic errors inherent in current numerical relativity wave-extraction methods become evident, and may le
The production of numerical relativity waveforms that describe quasicircular binary black hole mergers requires high-quality initial data, and an algorithm to iteratively reduce residual eccentricity. To date, these tools remain closed source, or in
Gravitational wave astrophysics relies heavily on the use of matched filtering both to detect signals in noisy data from detectors, and to perform parameter estimation on those signals. Matched filtering relies upon prior knowledge of the signals exp