ﻻ يوجد ملخص باللغة العربية
We discuss the role of clustering on monopole, dipole, and quadrupole excitations in nuclei in the framework of the ab initio symmetry-adapted no-core shell model (SA-NCSM). The SA-NCSM starts from nucleon-nucleon potentials and, by exploring symmetries known to dominate the nuclear dynamics, can reach nuclei up through the calcium region by accommodating ultra-large model spaces critical to descriptions of clustering and collectivity. The results are based on calculations of electromagnetic sum rules and discretized responses using the Lanczos algorithm, that can be used to determine response functions, and for 4He are benchmarked against exact solutions of the hyperspherical harmonics method. In particular, we focus on He, Be, and O isotopes, including giant resonances and monopole sum rules.
Results for ab initio no-core shell model calculations in a symmetry-adapted SU(3)-based coupling scheme demonstrate that collective modes in light nuclei emerge from first principles. The low-lying states of 6Li, 8Be, and 6He are shown to exhibit or
We extend the ab initio coupled-cluster effective interaction (CCEI) method to deformed open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a n
Background: Collective excitations of nuclei and their theoretical descriptions provide an insight into the structure of nuclei. Replacing traditional phenomenological interactions with unitarily transformed realistic nucleon-nucleon interactions inc
The relation of quarteting and clustering in atomic nuclei is discussed based on symmetry-considerations. This connection enables us to predict a complete high-energy cluster spectrum from the description of the low-energy quartet part. As an example
Electromagnetic dipole absorption cross-sections of transitional nuclei with large-amplitude shape fluctuations are calculated in a microscopic way by introducing the concept of Instantaneous Shape Sampling. The concept bases on the slow shape dynami