ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromagnetic Dipole Strength in Transitional Nuclei

267   0   0.0 ( 0 )
 نشر من قبل Stefan G. Frauendorf
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Electromagnetic dipole absorption cross-sections of transitional nuclei with large-amplitude shape fluctuations are calculated in a microscopic way by introducing the concept of Instantaneous Shape Sampling. The concept bases on the slow shape dynamics as compared to the fast dipole vibrations. The elctromagnetic dipole strength is calculated by means of RPA for the instantaneous shapes, the probability of which is obtained by means of IBA. Very good agreement with the experimental absorption cross sections near the nucleon emission threshold is obtained.



قيم البحث

اقرأ أيضاً

The semiclassical method for description of the radiative strength function is used for asymmetric nuclei with $N e Z$. The theory is based on the linearized Vlasov-Landau equations in two-component finite Fermi liquid. The dependence of the shape $ E1$ strength on the coupling constant between proton and neutron subsystems was studied.
The level densities and $gamma$-ray strength functions of $^{105,106,111,112}$Cd have been extracted from particle-$gamma$ coincidence data using the Oslo method. The level densities are in very good agreement with known levels at low excitation ener gy. The $gamma$-ray strength functions display no strong enhancement for low $gamma$ energies. However, more low-energy strength is apparent for $^{105,106}$Cd than for $^{111,112}$Cd. For $gamma$ energies above $approx$ 4 MeV, there is evidence for some extra strength, similar to what has been previously observed for the Sn isotopes. The origin of this extra strength is unclear; it might be due to $E1$ and $M1$ transitions originating from neutron skin oscillations or the spin-flip resonance, respectively.
126 - G. Colo` 2000
Isoscalar dipole strength distributions in spherical medium- and heavy-mass nuclei are calculated within random phase approximation (RPA) or quasiparticle RPA. Different Skyrme-type interactions corresponding to incompressibilities in the range 200 - 250 MeV are used. The results are discussed in comparison with existing data on isoscalar giant dipole resonances. Two main issues are raised, firstly the calculated giant resonance energies are somewhat higher than the observed ones, and secondly a sizable fraction of strength is predicted below 20 MeV which needs to be experimentally confirmed.
The dipole response of the N=50 nucleus 90Zr was studied in photon-scattering experiments at the electron linear accelerator ELBE with bremsstrahlung produced at kinetic electron energies of 7.9, 9.0, and 13.2 MeV. We identified 189 levels up to an e xcitation energy of 12.9 MeV. Statistical methods were applied to estimate intensities of inelastic transitions and to correct the intensities of the ground-state transitions for their branching ratios. In this way we derived the photoabsorption cross section up to the neutron-separation energy. This cross section matches well the photoabsorption cross section obtained from (gamma,n) data and thus provides information about the extension of the dipole-strength distribution toward energies below the neutron-separation energy. An enhancement of E1 strength has been found in the range of 6 MeV to 11 MeV. Calculations within the framework of the quasiparticle-phonon model ascribe this strength to a vibration of the excessive neutrons against the N = Z neutron-proton core, giving rise to a pygmy dipole resonance.
Evidence of strong coupling of quasiparticle excitations with gamma-vibration is shown to occur in transitional nuclei. High-spin band structures in [166,168,170,172]Er are studied by employing the recently developed multi-quasiparticle triaxial proj ected shell model approach. It is demonstrated that a low-lying K=3 band observed in these nuclei, the nature of which has remained unresolved, originates from the angular-momentum projection of triaxially deformed two-quasiparticle (qp) configurations. Further, it is predicted that the structure of this band depends critically on the shell filling: in [166]Er the lowest K=3 2-qp band is formed from proton configuration, in [168]Er the K=3 neutron and proton 2-qp bands are almost degenerate, and for [170]Er and [172]Er the neutron K=3 2-qp band becomes favored and can cross the gamma-vibrational band at high rotational frequencies. We consider that these are few examples in even-even nuclei, where the three basic modes of rotational, vibrational, and quasi-particle excitations co-exist close to the yrast line.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا