ﻻ يوجد ملخص باللغة العربية
Gravitational collapse in cosmological context produces an intricate cosmic web of voids, walls, filaments and nodes. The anisotropic nature of collisionless collapse leads to the emergence of an anisotropic velocity dispersion, or stress, that absorbs most of the kinetic energy after shell-crossing. In this paper, we measure this large-scale velocity dispersion tensor $sigma^2_{ij}$ in $N$-body simulations using the phase-space interpolation technique. We study the environmental dependence of the amplitude and anisotropy of the velocity dispersion tensor field, and measure its spatial correlation and alignment. The anisotropy of $sigma^2_{ij}$ naturally encodes the collapse history and thus leads to a parameter-free identification of the four dynamically distinct cosmic web components. We find this purely dynamical classification to be in good agreement with some of the existing classification methods. In particular, we demonstrate that $sigma^2_{ij}$ is well aligned with the large-scale tidal field. We further investigate the influence of small scale density fluctuations on the large scale velocity dispersion, and find that the measured amplitude and alignments are dominated by the largest perturbations and thus remain largely unaffected. We anticipate that these results will give important new insight into the anisotropic nature of gravitational collapse on large scales, and the emergence of anisotropic stress in the cosmic web.
I review the nature of three-dimensional collapse in the Zeldovich approximation, how it relates to the underlying nature of the three-dimensional Lagrangian manifold and naturally gives rise to a hierarchical structure formation scenario that progre
We investigate the characteristics and the time evolution of the cosmic web from redshift, z=2, to present time, within the framework of the NEXUS+ algorithm. This necessitates the introduction of new analysis tools optimally suited to describe the v
The cosmic web is one of the most striking features of the distribution of galaxies and dark matter on the largest scales in the Universe. It is composed of dense regions packed full of galaxies, long filamentary bridges, flattened sheets and vast lo
The ultra-diffuse galaxy in the NGC 5846 group (NGC 5846_UDG1) was shown to have a large number of globular cluster (GC) candidates from deep imaging as part of the VEGAS survey. Recently, Muller et al. published a velocity dispersion, based on a doz
Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do they represent a key constituent of the Cosmic Web, they also are one of the cleanest probes and measures of global cosmological parameters. The shape an