ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron and muon-induced background studies for the AMoRE double-beta decay experiment

146   0   0.0 ( 0 )
 نشر من قبل Eunju Jeon
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

AMoRE (Advanced Mo-based Rare process Experiment) is an experiment to search a neutrinoless double-beta decay of $^{100}$Mo in molybdate crystals. The neutron and muon-induced backgrounds are crucial to obtain the zero-background level (<$10^{-5}$ counts/(keV$cdot$kg$cdot$yr)) for the AMoRE-II experiment, which is the second phase of the AMoRE project, planned to run at YEMI underground laboratory. To evaluate the effects of neutron and muon-induced backgrounds, we performed Geant4 Monte Carlo simulations and studied a shielding strategy for the AMORE-II experiment. Neutron-induced backgrounds were also included in the study. In this paper, we estimated the background level in the presence of possible shielding structures, which meet the background requirement for the AMoRE-II experiment.



قيم البحث

اقرأ أيضاً

123 - V. Alenkov , H. W. Bae , J. Beyer 2019
The Advanced Molybdenum-based Rare process Experiment (AMoRE) aims to search for neutrinoless double beta decay (0$ ubetabeta$) of $^{100}$Mo with $sim$100 kg of $^{100}$Mo-enriched molybdenum embedded in cryogenic detectors with a dual heat and ligh t readout. At the current, pilot stage of the AMoRE project we employ six calcium molybdate crystals with a total mass of 1.9 kg, produced from $^{48}$Ca-depleted calcium and $^{100}$Mo-enriched molybdenum ($^{48textrm{depl}}$Ca$^{100}$MoO$_4$). The simultaneous detection of heat(phonon) and scintillation (photon) signals is realized with high resolution metallic magnetic calorimeter sensors that operate at milli-Kelvin temperatures. This stage of the project is carried out in the Yangyang underground laboratory at a depth of 700 m. We report first results from the AMoRE-Pilot $0 ubetabeta$ search with a 111 kg$cdot$d live exposure of $^{48textrm{depl}}$Ca$^{100}$MoO$_4$ crystals. No evidence for $0 ubetabeta$ decay of $^{100}$Mo is found, and a upper limit is set for the half-life of 0$ ubetabeta$ of $^{100}$Mo of $T^{0 u}_{1/2} > 9.5times10^{22}$ y at 90% C.L.. This limit corresponds to an effective Majorana neutrino mass limit in the range $langle m_{betabeta}ranglele(1.2-2.1)$ eV.
135 - E.Aprile , M.Alfonsi , K.Arisaka 2013
The XENON100 experiment, installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), aims to directly detect dark matter in the form of Weakly Interacting Massive Particles (WIMPs) via their elastic scattering off xenon nuclei. This pape r presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from ($alpha$,n) and spontaneous fission reactions due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on Monte Carlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by the XENON100 experiment in 2011 and 2012, 0.11$^{+0.08}_{-0.04}$ events and 0.17$^{+0.12}_{-0.07}$ events, respectively, and conclude that they do not limit the sensitivity of the experiment.
115 - Giovanni Benato 2015
The Gerda experiment designed to search for the neutrinoless double beta decay in 76Ge has successfully completed the first data collection. No signal excess is found, and a lower limit on the half life of the process is set, with T1/2 > 2.1x10^25 yr (90% CL). After a review of the experimental setup and of the main Phase I results, the hardware upgrade for Gerda Phase II is described, and the physics reach of the new data collection is reported.
111 - S.R. Elliott , H. Ejiri 2017
Solar neutrinos interact within double-beta decay (BB) detectors and contribute to backgrounds for BB experiments. Background contributions due to charge-current solar neutrino interactions with BB nuclei of $^{76}$Ge, $^{82}$Se, $^{100}$Mo, $^{130}$ Te, $^{136}$Xe, and $^{150}$Nd are evaluated. They are shown to be significant for future high-sensitivity BB experiments that may search for Majorana neutrino masses in the inverted-hierarchy mass region. The impact of solar neutrino backgrounds and their reduction are discussed for future BB experiments.
The next-generation Enriched Xenon Observatory (nEXO) is a proposed experiment to search for neutrinoless double beta ($0 ubetabeta$) decay in $^{136}$Xe with a target half-life sensitivity of approximately $10^{28}$ years using $5times10^3$ kg of is otopically enriched liquid-xenon in a time projection chamber. This improvement of two orders of magnitude in sensitivity over current limits is obtained by a significant increase of the $^{136}$Xe mass, the monolithic and homogeneous configuration of the active medium, and the multi-parameter measurements of the interactions enabled by the time projection chamber. The detector concept and anticipated performance are presented based upon demonstrated realizable background rates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا