ﻻ يوجد ملخص باللغة العربية
Light scattering and spin-orbit angular momentum coupling phenomena from subwavelength objects, with electric and magnetic dipolar responses, are receiving an increasing interest. Under illumination by circularly polarized light, spin-orbit coupling effects have been shown to lead to significant shifts between the measured and actual position of particles. Here we show that the remarkable angular dependence of these optical mirages and those of the intensity, degree of circular polarization (DoCP), and spin and orbital angular momentum of scattered photons, are all linked and fully determined by the dimensionless asymmetry parameter g, being independent of the specific optical properties of the scatterer. Interestingly, for g different from 0, the maxima of the optical mirage and angular momentum exchange take place at different scattering angles. In addition we show that the g parameter is exactly half of the DoCP at a right-angle scattering. This finding opens the possibility to infer the whole angular properties of the scattered fields by a single far-field polarization measurement.
Optical isolation enables nonreciprocal manipulations of light with broad applications in optical communications. Optical isolation by rotating structures has drawn considerable attention due to its magnetic-free nature and unprecedented performance.
The edge diffraction of a homogeneously polarized light beam is studied theoretically based on the paraxial optics and Fresnel-Kirchhoff approximation, and the dependence of the diffracted beam pattern of the incident beam polarization is predicted.
Chiral spin textures are researched widely in condensed matter systems and show potential for spintronics and storage applications. Along with extensive condensed-matter studies of chiral spin textures, photonic counterparts of these textures have be
Speckle patterns generated in a disordered medium carry a lot of information despite the complete randomness in the intensity pattern. When the medium possesses $chi^{(2)}$ nonlinearity, the speckle is sensitive to the phase of the incident fundament
We develop a novel theoretical framework describing polariton-enhanced spin-orbit interaction of light on the surface of two-dimensional media. Starting from the integral formulation of electromagnetic scattering, we exploit the reduced dimensionalit