ترغب بنشر مسار تعليمي؟ اضغط هنا

Representation Learning for Spatial Graphs

111   0   0.0 ( 0 )
 نشر من قبل Ce Ju
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, the topic of graph representation learning has received plenty of attention. Existing approaches usually focus on structural properties only and thus they are not sufficient for those spatial graphs where the nodes are associated with some spatial information. In this paper, we present the first deep learning approach called s2vec for learning spatial graph representations, which is based on denoising autoencoders framework (DAF). We evaluate the learned representations on real datasets and the results verified the effectiveness of s2vec when used for spatial clustering.

قيم البحث

اقرأ أيضاً

Effective information analysis generally boils down to properly identifying the structure or geometry of the data, which is often represented by a graph. In some applications, this structure may be partly determined by design constraints or pre-deter mined sensing arrangements, like in road transportation networks for example. In general though, the data structure is not readily available and becomes pretty difficult to define. In particular, the global smoothness assumptions, that most of the existing works adopt, are often too general and unable to properly capture localized properties of data. In this paper, we go beyond this classical data model and rather propose to represent information as a sparse combination of localized functions that live on a data structure represented by a graph. Based on this model, we focus on the problem of inferring the connectivity that best explains the data samples at different vertices of a graph that is a priori unknown. We concentrate on the case where the observed data is actually the sum of heat diffusion processes, which is a quite common model for data on networks or other irregular structures. We cast a new graph learning problem and solve it with an efficient nonconvex optimization algorithm. Experiments on both synthetic and real world data finally illustrate the benefits of the proposed graph learning framework and confirm that the data structure can be efficiently learned from data observations only. We believe that our algorithm will help solving key questions in diverse application domains such as social and biological network analysis where it is crucial to unveil proper geometry for data understanding and inference.
Inductive representation learning on temporal graphs is an important step toward salable machine learning on real-world dynamic networks. The evolving nature of temporal dynamic graphs requires handling new nodes as well as capturing temporal pattern s. The node embeddings, which are now functions of time, should represent both the static node features and the evolving topological structures. Moreover, node and topological features can be temporal as well, whose patterns the node embeddings should also capture. We propose the temporal graph attention (TGAT) layer to efficiently aggregate temporal-topological neighborhood features as well as to learn the time-feature interactions. For TGAT, we use the self-attention mechanism as building block and develop a novel functional time encoding technique based on the classical Bochners theorem from harmonic analysis. By stacking TGAT layers, the network recognizes the node embeddings as functions of time and is able to inductively infer embeddings for both new and observed nodes as the graph evolves. The proposed approach handles both node classification and link prediction task, and can be naturally extended to include the temporal edge features. We evaluate our method with transductive and inductive tasks under temporal settings with two benchmark and one industrial dataset. Our TGAT model compares favorably to state-of-the-art baselines as well as the previous temporal graph embedding approaches.
The potential for machine learning systems to amplify social inequities and unfairness is receiving increasing popular and academic attention. Much recent work has focused on developing algorithmic tools to assess and mitigate such unfairness. Howeve r, there is little work on enhancing fairness in graph algorithms. Here, we develop a simple, effective and general method, CrossWalk, that enhances fairness of various graph algorithms, including influence maximization, link prediction and node classification, applied to node embeddings. CrossWalk is applicable to any random walk based node representation learning algorithm, such as DeepWalk and Node2Vec. The key idea is to bias random walks to cross group boundaries, by upweighting edges which (1) are closer to the groups peripheries or (2) connect different groups in the network. CrossWalk pulls nodes that are near groups peripheries towards their neighbors from other groups in the embedding space, while preserving the necessary structural information from the graph. Extensive experiments show the effectiveness of our algorithm to enhance fairness in various graph algorithms, including influence maximization, link prediction and node classification in synthetic and real networks, with only a very small decrease in performance.
As a crucial component in intelligent transportation systems, traffic flow prediction has recently attracted widespread research interest in the field of artificial intelligence (AI) with the increasing availability of massive traffic mobility data. Its key challenge lies in how to integrate diverse factors (such as temporal rules and spatial dependencies) to infer the evolution trend of traffic flow. To address this problem, we propose a unified neural network called Attentive Traffic Flow Machine (ATFM), which can effectively learn the spatial-temporal feature representations of traffic flow with an attention mechanism. In particular, our ATFM is composed of two progressive Convolutional Long Short-Term Memory (ConvLSTM cite{xingjian2015convolutional}) units connected with a convolutional layer. Specifically, the first ConvLSTM unit takes normal traffic flow features as input and generates a hidden state at each time-step, which is further fed into the connected convolutional layer for spatial attention map inference. The second ConvLSTM unit aims at learning the dynamic spatial-temporal representations from the attentionally weighted traffic flow features. Further, we develop two deep learning frameworks based on ATFM to predict citywide short-term/long-term traffic flow by adaptively incorporating the sequential and periodic data as well as other external influences. Extensive experiments on two standard benchmarks well demonstrate the superiority of the proposed method for traffic flow prediction. Moreover, to verify the generalization of our method, we also apply the customized framework to forecast the passenger pickup/dropoff demands in traffic prediction and show its superior performance. Our code and data are available at {color{blue}url{https://github.com/liulingbo918/ATFM}}.
We study the problem of semi-supervised learning on graphs, for which graph neural networks (GNNs) have been extensively explored. However, most existing GNNs inherently suffer from the limitations of over-smoothing, non-robustness, and weak-generali zation when labeled nodes are scarce. In this paper, we propose a simple yet effective framework---GRAPH RANDOM NEURAL NETWORKS (GRAND)---to address these issues. In GRAND, we first design a random propagation strategy to perform graph data augmentation. Then we leverage consistency regularization to optimize the prediction consistency of unlabeled nodes across different data augmentations. Extensive experiments on graph benchmark datasets suggest that GRAND significantly outperforms state-of-the-art GNN baselines on semi-supervised node classification. Finally, we show that GRAND mitigates the issues of over-smoothing and non-robustness, exhibiting better generalization behavior than existing GNNs. The source code of GRAND is publicly available at https://github.com/Grand20/grand.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا