ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Incremental Triplet Margin for Person Re-identification

107   0   0.0 ( 0 )
 نشر من قبل Di Xie
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Person re-identification (ReID) aims to match people across multiple non-overlapping video cameras deployed at different locations. To address this challenging problem, many metric learning approaches have been proposed, among which triplet loss is one of the state-of-the-arts. In this work, we explore the margin between positive and negative pairs of triplets and prove that large margin is beneficial. In particular, we propose a novel multi-stage training strategy which learns incremental triplet margin and improves triplet loss effectively. Multiple levels of feature maps are exploited to make the learned features more discriminative. Besides, we introduce global hard identity searching method to sample hard identities when generating a training batch. Extensive experiments on Market-1501, CUHK03, and DukeMTMCreID show that our approach yields a performance boost and outperforms most existing state-of-the-art methods.



قيم البحث

اقرأ أيضاً

Person re-identification (Re-ID) aims at matching images of the same person across disjoint camera views, which is a challenging problem in multimedia analysis, multimedia editing and content-based media retrieval communities. The major challenge lie s in how to preserve similarity of the same person across video footages with large appearance variations, while discriminating different individuals. To address this problem, conventional methods usually consider the pairwise similarity between persons by only measuring the point to point (P2P) distance. In this paper, we propose to use deep learning technique to model a novel set to set (S2S) distance, in which the underline objective focuses on preserving the compactness of intra-class samples for each camera view, while maximizing the margin between the intra-class set and inter-class set. The S2S distance metric is consisted of three terms, namely the class-identity term, the relative distance term and the regularization term. The class-identity term keeps the intra-class samples within each camera view gathering together, the relative distance term maximizes the distance between the intra-class class set and inter-class set across different camera views, and the regularization term smoothness the parameters of deep convolutional neural network (CNN). As a result, the final learned deep model can effectively find out the matched target to the probe object among various candidates in the video gallery by learning discriminative and stable feature representations. Using the CUHK01, CUHK03, PRID2011 and Market1501 benchmark datasets, we extensively conducted comparative evaluations to demonstrate the advantages of our method over the state-of-the-art approaches.
61 - Zhen Li , Hanyang Shao , Nian Xue 2019
This paper studies the problem of Person Re-Identification (ReID)for large-scale applications. Recent research efforts have been devoted to building complicated part models, which introduce considerably high computational cost and memory consumption, inhibiting its practicability in large-scale applications. This paper aims to develop a novel learning strategy to find efficient feature embeddings while maintaining the balance of accuracy and model complexity. More specifically, we find by enhancing the classical triplet loss together with cross-entropy loss, our method can explore the hard examples and build a discriminant feature embedding yet compact enough for large-scale applications. Our method is carried out progressively using Bayesian optimization, and we call it the Progressive Learning Algorithm (PLA). Extensive experiments on three large-scale datasets show that our PLA is comparable or better than the-state-of-the-arts. Especially, on the challenging Market-1501 dataset, we achieve Rank-1=94.7%/mAP=89.4% while saving at least 30% parameters than strong part models.
Modern video person re-identification (re-ID) machines are often trained using a metric learning approach, supervised by a triplet loss. The triplet loss used in video re-ID is usually based on so-called clip features, each aggregated from a few fram e features. In this paper, we propose to model the video clip as a set and instead study the distance between sets in the corresponding triplet loss. In contrast to the distance between clip representations, the distance between clip sets considers the pair-wise similarity of each element (i.e., frame representation) between two sets. This allows the network to directly optimize the feature representation at a frame level. Apart from the commonly-used set distance metrics (e.g., ordinary distance and Hausdorff distance), we further propose a hybrid distance metric, tailored for the set-aware triplet loss. Also, we propose a hard positive set construction strategy using the learned class prototypes in a batch. Our proposed method achieves state-of-the-art results across several standard benchmarks, demonstrating the advantages of the proposed method.
Visual attention has proven to be effective in improving the performance of person re-identification. Most existing methods apply visual attention heuristically by learning an additional attention map to re-weight the feature maps for person re-ident ification. However, this kind of methods inevitably increase the model complexity and inference time. In this paper, we propose to incorporate the attention learning as additional objectives in a person ReID network without changing the original structure, thus maintain the same inference time and model size. Two kinds of attentions have been considered to make the learned feature maps being aware of the person and related body parts respectively. Globally, a holistic attention branch (HAB) makes the feature maps obtained by backbone focus on persons so as to alleviate the influence of background. Locally, a partial attention branch (PAB) makes the extracted features be decoupled into several groups and be separately responsible for different body parts (i.e., keypoints), thus increasing the robustness to pose variation and partial occlusion. These two kinds of attentions are universal and can be incorporated into existing ReID networks. We have tested its performance on two typical networks (TriNet and Bag of Tricks) and observed significant performance improvement on five widely used datasets.
Recent years have witnessed a substantial increase in the deep learning (DL)architectures proposed for visual recognition tasks like person re-identification,where individuals must be recognized over multiple distributed cameras. Althoughthese archit ectures have greatly improved the state-of-the-art accuracy, thecomputational complexity of the CNNs commonly used for feature extractionremains an issue, hindering their deployment on platforms with limited resources,or in applications with real-time constraints. There is an obvious advantage toaccelerating and compressing DL models without significantly decreasing theiraccuracy. However, the source (pruning) domain differs from operational (target)domains, and the domain shift between image data captured with differentnon-overlapping camera viewpoints leads to lower recognition accuracy. In thispaper, we investigate the prunability of these architectures under different designscenarios. This paper first revisits pruning techniques that are suitable forreducing the computational complexity of deep CNN networks applied to personre-identification. Then, these techniques are analysed according to their pruningcriteria and strategy, and according to different scenarios for exploiting pruningmethods to fine-tuning networks to target domains. Experimental resultsobtained using DL models with ResNet feature extractors, and multiplebenchmarks re-identification datasets, indicate that pruning can considerablyreduce network complexity while maintaining a high level of accuracy. Inscenarios where pruning is performed with large pre-training or fine-tuningdatasets, the number of FLOPS required by ResNet architectures is reduced byhalf, while maintaining a comparable rank-1 accuracy (within 1% of the originalmodel). Pruning while training a larger CNNs can also provide a significantlybetter performance than fine-tuning smaller ones.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا