ترغب بنشر مسار تعليمي؟ اضغط هنا

A Note on a Picture-Hanging Puzzle

134   0   0.0 ( 0 )
 نشر من قبل Radoslav Fulek
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the picture-hanging puzzle we are to hang a picture so that the string loops around $n$ nails and the removal of any nail results in a fall of the picture. We show that the length of a sequence representing an element in the free group with $n$ generators that corresponds to a solution of the picture-hanging puzzle must be at least $n2^{sqrt{log_2 n}}$. In other words, this is a lower bound on the length of a sequence representing a non-trivial element in the free group with $n$ generators such that if we replace any of the generators by the identity the sequence becomes trivial.



قيم البحث

اقرأ أيضاً

68 - Zhengjun Cao , Lihua Liu 2016
In 1990, Alon and Kleitman proposed an argument for the sum-free subset problem: every set of n nonzero elements of a finite Abelian group contains a sum-free subset A of size |A|>frac{2}{7}n. In this note, we show that the argument confused two diff erent randomness. It applies only to the finite Abelian group G = (Z/pZ)^s where p is a prime. For the general case, the problem remains open.
Let $S$ be a connected graph which contains an induced path of $n-1$ vertices, where $n$ is the order of $S.$ We consider a puzzle on $S$. A configuration of the puzzle is simply an $n$-dimensional column vector over ${0, 1}$ with coordinates of the vector indexed by the vertex set $S$. For each configuration $u$ with a coordinate $u_s=1$, there exists a move that sends $u$ to the new configuration which flips the entries of the coordinates adjacent to $s$ in $u.$ We completely determine if one configuration can move to another in a sequence of finite steps.
259 - Maysam Maysami Sadr 2019
The Frankl conjecture (called also union-closed sets conjecture) is one of the famous unsolved conjectures in combinatorics of finite sets. In this short note, we introduce and to some extent justify some variants of the Frankl conjecture.
103 - David Callan 2016
There is a bijection from Schroder paths to {4132, 4231}-avoiding permutations due to Bandlow, Egge, and Killpatrick that sends area to inversion number. Here we give a concise description of this bijection.
69 - Stefan Glock 2020
This exposition contains a short and streamlined proof of the recent result of Kwan, Letzter, Sudakov and Tran that every triangle-free graph with minimum degree $d$ contains an induced bipartite subgraph with average degree $Omega(ln d/lnln d)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا