ﻻ يوجد ملخص باللغة العربية
In conventional solid-state electron systems with localized states the ac absorption is linear since the inelastic widths of the energy levels exceeds the drive amplitude. The situation is different in the systems of cold atoms in which phonons are absent. Then even a weak drive leads to saturation of the ac absorption within resonant pairs, so that the population of levels oscillates with the Rabi frequency. We demonstrate that, in the presence of weak dipole-dipole interactions, the response of the system acquires a long-time component which oscillates with frequency much smaller than the Rabi frequency. The underlying mechanism of this long-time behavior is that the fields created in the course of the Rabi oscillations serve as resonant drive for the second-generation Rabi oscillations in pairs with level spacings close to the Rabi frequency. The frequency of the second-generation oscillations is of the order of interaction strength. As these oscillations develop, they can initiate the next-generation Rabi oscillations, and so on. Formation of the second-generation oscillations is facilitated by the non-diagonal component of the dipole-dipole interaction tensor.
We study spatial structures of anomalously localized states (ALS) in tail regions at the critical point of the Anderson transition in the two-dimensional symplectic class. In order to examine tail structures of ALS, we apply the multifractal analysis
I derive a mode-coupling theory for the velocity autocorrelation function, psi(t), in a fluid of randomly driven inelastic hard spheres far from equilibrium. With this, I confirm a conjecture from simulations that the velocity autocorrelation functio
We present an analytical method, based on a real space decimation scheme, to extract the exact eigenvalues of a macroscopically large set of pinned localized excitations in a Cayley tree fractal network. Within a tight binding scheme we exploit the a
We present results of conductance-noise experiments on disordered films of crystalline indium oxide with lateral dimensions 2microns to 1mm. The power-spectrum of the noise has the usual 1/f form, and its magnitude increases with inverse sample-volum
We present a numerical study of the spin Hall effect in a two-dimensional hole gas (2DHG) system in the presence of disorder. We find that the spin Hall conductance (SHC), extrapolated to the thermodynamic limit, remains finite in a wide range of dis