ترغب بنشر مسار تعليمي؟ اضغط هنا

Diagnostic Visualization for Deep Neural Networks Using Stochastic Gradient Langevin Dynamics

129   0   0.0 ( 0 )
 نشر من قبل David Chan
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The internal states of most deep neural networks are difficult to interpret, which makes diagnosis and debugging during training challenging. Activation maximization methods are widely used, but lead to multiple optima and are hard to interpret (appear noise-like) for complex neurons. Image-based methods use maximally-activating image regions which are easier to interpret, but do not provide pixel-level insight into why the neuron responds to them. In this work we introduce an MCMC method: Langevin Dynamics Activation Maximization (LDAM), which is designed for diagnostic visualization. LDAM provides two affordances in combination: the ability to explore the set of maximally activating pre-images, and the ability to trade-off interpretability and pixel-level accuracy using a GAN-style discriminator as a regularizer. We present case studies on MNIST, CIFAR and ImageNet datasets exploring these trade-offs. Finally we show that diagnostic visualization using LDAM leads to a novel insight into the parameter averaging method for deep net training.

قيم البحث

اقرأ أيضاً

Deep neural networks (DNNs) have achieved remarkable success in computer vision; however, training DNNs for satisfactory performance remains challenging and suffers from sensitivity to empirical selections of an optimization algorithm for training. S tochastic gradient descent (SGD) is dominant in training a DNN by adjusting neural network weights to minimize the DNNs loss function. As an alternative approach, neuroevolution is more in line with an evolutionary process and provides some key capabilities that are often unavailable in SGD, such as the heuristic black-box search strategy based on individual collaboration in neuroevolution. This paper proposes a novel approach that combines the merits of both neuroevolution and SGD, enabling evolutionary search, parallel exploration, and an effective probe for optimal DNNs. A hierarchical cluster-based suppression algorithm is also developed to overcome similar weight updates among individuals for improving population diversity. We implement the proposed approach in four representative DNNs based on four publicly-available datasets. Experiment results demonstrate that the four DNNs optimized by the proposed approach all outperform corresponding ones optimized by only SGD on all datasets. The performance of DNNs optimized by the proposed approach also outperforms state-of-the-art deep networks. This work also presents a meaningful attempt for pursuing artificial general intelligence.
Stochastic gradient Langevin dynamics (SGLD) has gained the attention of optimization researchers due to its global optimization properties. This paper proves an improved convergence property to local minimizers of nonconvex objective functions using SGLD accelerated by variance reductions. Moreover, we prove an ergodicity property of the SGLD scheme, which gives insights on its potential to find global minimizers of nonconvex objectives.
76 - Sehwan Kim , Qifan Song , 2020
Bayesian deep learning offers a principled way to address many issues concerning safety of artificial intelligence (AI), such as model uncertainty,model interpretability, and prediction bias. However, due to the lack of efficient Monte Carlo algorith ms for sampling from the posterior of deep neural networks (DNNs), Bayesian deep learning has not yet powered our AI system. We propose a class of adaptive stochastic gradient Markov chain Monte Carlo (SGMCMC) algorithms, where the drift function is biased to enhance escape from saddle points and the bias is adaptively adjusted according to the gradient of past samples. We establish the convergence of the proposed algorithms under mild conditions, and demonstrate via numerical examples that the proposed algorithms can significantly outperform the existing SGMCMC algorithms, such as stochastic gradient Langevin dynamics (SGLD), stochastic gradient Hamiltonian Monte Carlo (SGHMC) and preconditioned SGLD, in both simulation and optimization tasks.
Deep neural networks often suffer from poor performance or even training failure due to the ill-conditioned problem, the vanishing/exploding gradient problem, and the saddle point problem. In this paper, a novel method by acting the gradient activati on function (GAF) on the gradient is proposed to handle these challenges. Intuitively, the GAF enlarges the tiny gradients and restricts the large gradient. Theoretically, this paper gives conditions that the GAF needs to meet, and on this basis, proves that the GAF alleviates the problems mentioned above. In addition, this paper proves that the convergence rate of SGD with the GAF is faster than that without the GAF under some assumptions. Furthermore, experiments on CIFAR, ImageNet, and PASCAL visual object classes confirm the GAFs effectiveness. The experimental results also demonstrate that the proposed method is able to be adopted in various deep neural networks to improve their performance. The source code is publicly available at https://github.com/LongJin-lab/Activated-Gradients-for-Deep-Neural-Networks.
Recent advances in acquisition equipment is providing experiments with growing amounts of precise yet affordable sensors. At the same time an improved computational power, coming from new hardware resources (GPU, FPGA, ACAP), has been made available at relatively low costs. This led us to explore the possibility of completely renewing the chain of acquisition for a fusion experiment, where many high-rate sources of data, coming from different diagnostics, can be combined in a wide framework of algorithms. If on one hand adding new data sources with different diagnostics enriches our knowledge about physical aspects, on the other hand the dimensions of the overall model grow, making relations among variables more and more opaque. A new approach for the integration of such heterogeneous diagnostics, based on composition of deep variational autoencoders, could ease this problem, acting as a structural sparse regularizer. This has been applied to RFX-mod experiment data, integrating the soft X-ray linear images of plasma temperature with the magnetic state. However to ensure a real-time signal analysis, those algorithmic techniques must be adapted to run in well suited hardware. In particular it is shown that, attempting a quantization of neurons transfer functions, such models can be modified to create an embedded firmware. This firmware, approximating the deep inference model to a set of simple operations, fits well with the simple logic units that are largely abundant in FPGAs. This is the key factor that permits the use of affordable hardware with complex deep neural topology and operates them in real-time.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا