ترغب بنشر مسار تعليمي؟ اضغط هنا

Task Offloading and Replication for Vehicular Cloud Computing: A Multi-Armed Bandit Approach

72   0   0.0 ( 0 )
 نشر من قبل Lixing Chen
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Vehicular Cloud Computing (VCC) is a new technological shift which exploits the computation and storage resources on vehicles for computational service provisioning. Spare on-board resources are pooled by a VCC operator, e.g. a roadside unit, to complete task requests using the vehicle-as-a-resource framework. In this paper, we investigate timely service provisioning for deadline-constrained tasks in VCC systems by leveraging the task replication technique (i.e., allowing one task to be executed by several server vehicles). A learning-based algorithm, called DATE-V (Deadline-Aware Task rEplication for Vehicular Cloud), is proposed to address the special issues in VCC systems including uncertainty of vehicle movements, volatile vehicle members, and large vehicle population. The proposed algorithm is developed based on a novel Contextual-Combinatorial Multi-Armed Bandit (CC-MAB) learning framework. DATE-V is `contextual because it utilizes side information (context) of vehicles and tasks to infer the completion probability of a task replication under random vehicle movements. DATE-V is `combinatorial because it aims to replicate the received task and send the task replications to multiple server vehicles to guarantee the service timeliness. We rigorously prove that our learning algorithm achieves a sublinear regret bound compared to an oracle algorithm that knows the exact completion probability of any task replications. Simulations are carried out based on real-world vehicle movement traces and the results show that DATE-V significantly outperforms benchmark solutions.



قيم البحث

اقرأ أيضاً

Vehicular cloud computing has emerged as a promising paradigm for realizing user requirements in computation-intensive tasks in modern driving environments. In this paper, a novel framework of multi-task offloading over vehicular clouds (VCs) is intr oduced where tasks and VCs are modeled as undirected weighted graphs. Aiming to achieve a trade-off between minimizing task completion time and data exchange costs, task components are efficiently mapped to available virtual machines in the related VCs. The problem is formulated as a non-linear integer programming problem, mainly under constraints of limited contact between vehicles as well as available resources, and addressed in low-traffic and rush-hour scenarios. In low-traffic cases, we determine optimal solutions; in rush-hour cases, a connection-restricted randommatching-based subgraph isomorphism algorithm is proposed that presents low computational complexity. Evaluations of the proposed algorithms against greedy-based baseline methods are conducted via extensive simulations.
This letter studies an ultra-reliable low latency communication problem focusing on a vehicular edge computing network in which vehicles either fetch and synthesize images recorded by surveillance cameras or acquire the synthesized image from an edge computing server. The notion of risk-sensitive in financial mathematics is leveraged to define a reliability measure, and the studied problem is formulated as a risk minimization problem for each vehicles end-to-end (E2E) task fetching and offloading delays. Specifically, by resorting to a joint utility and policy estimation-based learning algorithm, a distributed risk-sensitive solution for task fetching and offloading is proposed. Simulation results show that our proposed solution achieves performance improvements up to 40% variance reduction and steeper distribution tail of the E2E delay over an averaged-based baseline.
In a vehicular edge computing (VEC) system, vehicles can share their surplus computation resources to provide cloud computing services. The highly dynamic environment of the vehicular network makes it challenging to guarantee the task offloading dela y. To this end, we introduce task replication to the VEC system, where the replicas of a task are offloaded to multiple vehicles at the same time, and the task is completed upon the first response among replicas. First, the impact of the number of task replicas on the offloading delay is characterized, and the optimal number of task replicas is approximated in closed-form. Based on the analytical result, we design a learning-based task replication algorithm (LTRA) with combinatorial multi-armed bandit theory, which works in a distributed manner and can automatically adapt itself to the dynamics of the VEC system. A realistic traffic scenario is used to evaluate the delay performance of the proposed algorithm. Results show that, under our simulation settings, LTRA with an optimized number of task replicas can reduce the average offloading delay by over 30% compared to the benchmark without task replication, and at the same time can improve the task completion ratio from 97% to 99.6%.
Base station (BS) placement in mobile networks is critical to the efficient use of resources in any communication system and one of the main factors that determines the quality of communication. Although there is ample literature on the optimum place ment of BSs for sub-6 GHz bands, channel propagation characteristics, such as penetration loss, are notably different in millimeter-wave (mmWave) bands than in sub-6 GHz bands. Therefore, designated solutions are needed for mmWave systems to have reliable quality of service (QoS) assessment. This article proposes a multi-armed bandit (MAB) learning approach for the mmWave BS placement problem. The proposed solution performs viewshed analysis to identify the areas that are visible to a given BS location by considering the 3D geometry of the outdoor environments. Coverage probability, which is used as the QoS metric, is calculated using the appropriate path loss model depending on the viewshed analysis and a probabilistic blockage model and then fed to the MAB learning mechanism. The optimum BS location is then determined based on the expected reward that the candidate locations attain at the end of the training process. Unlike the optimization-based techniques, this method can capture the time-varying behavior of the channel and find the optimal BS locations that maximize long-term performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا