ﻻ يوجد ملخص باللغة العربية
The Quantum Approximate Optimization Algorithm, QAOA, uses a shallow depth quantum circuit to produce a parameter dependent state. For a given combinatorial optimization problem instance, the quantum expectation of the associated cost function is the parameter dependent objective function of the QAOA. We demonstrate that if the parameters are fixed and the instance comes from a reasonable distribution then the objective function value is concentrated in the sense that typical instances have (nearly) the same value of the objective function. This applies not just for optimal parameters as the whole landscape is instance independent. We can prove this is true for low depth quantum circuits for instances of MaxCut on large 3-regular graphs. Our results generalize beyond this example. We support the arguments with numerical examples that show remarkable concentration. For higher depth circuits the numerics also show concentration and we argue for this using the Law of Large Numbers. We also observe by simulation that if we find parameters which result in good performance at say 10 bits these same parameters result in good performance at say 24 bits. These findings suggest ways to run the QAOA that reduce or eliminate the use of the outer loop optimization and may allow us to find good solutions with fewer calls to the quantum computer.
Quantum variational algorithms have garnered significant interest recently, due to their feasibility of being implemented and tested on noisy intermediate scale quantum (NISQ) devices. We examine the robustness of the quantum approximate optimization
The quantum approximate optimization algorithm (QAOA) has numerous promising applications in solving the combinatorial optimization problems on near-term Noisy Intermediate Scalable Quantum (NISQ) devices. QAOA has a quantum-classical hybrid structur
The Quantum Approximate Optimization Algorithm can naturally be applied to combinatorial search problems on graphs. The quantum circuit has p applications of a unitary operator that respects the locality of the graph. On a graph with bounded degree,
The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical algorithm that seeks to achieve approximate solutions to optimization problems by iteratively alternating between intervals of controlled quantum evolution. Here, we
The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical variational algorithm which offers the potential to handle combinatorial optimization problems. Introducing constraints in such combinatorial optimization problems po