ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum constraint learning for quantum approximate optimization algorithm

79   0   0.0 ( 0 )
 نشر من قبل Santosh Kumar Radha
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical variational algorithm which offers the potential to handle combinatorial optimization problems. Introducing constraints in such combinatorial optimization problems poses a major challenge in the extensions of QAOA to support relevant larger scale problems. In this paper, we introduce a quantum machine learning approach to learn the mixer Hamiltonian that is required to hard constrain the search subspace. We show that this method can be used for encoding any general form of constraints. By using a form of an adaptable ansatz, one can directly plug the learnt unitary into the QAOA framework. This procedure gives the flexibility to control the depth of the circuit at the cost of accuracy of enforcing the constraint, thus having immediate application in the Noisy Intermediate Scale Quantum (NISQ) era. We also develop an intuitive metric that uses Wasserstein distance to assess the performance of general approximate optimization algorithms with/without constrains. Finally using this metric, we evaluate the performance of the proposed algorithm.



قيم البحث

اقرأ أيضاً

120 - Yulong Dong , Xiang Meng , Lin Lin 2019
Quantum variational algorithms have garnered significant interest recently, due to their feasibility of being implemented and tested on noisy intermediate scale quantum (NISQ) devices. We examine the robustness of the quantum approximate optimization algorithm (QAOA), which can be used to solve certain quantum control problems, state preparation problems, and combinatorial optimization problems. We demonstrate that the error of QAOA simulation can be significantly reduced by robust control optimization techniques, specifically, by sequential convex programming (SCP), to ensure error suppression in situations where the source of the error is known but not necessarily its magnitude. We show that robust optimization improves both the objective landscape of QAOA as well as overall circuit fidelity in the presence of coherent errors and errors in initial state preparation.
The performance of the quantum approximate optimization algorithm is evaluated by using three different measures: the probability of finding the ground state, the energy expectation value, and a ratio closely related to the approximation ratio. The s et of problem instances studied consists of weighted MaxCut problems and 2-satisfiability problems. The Ising model representations of the latter possess unique ground states and highly-degenerate first excited states. The quantum approximate optimization algorithm is executed on quantum computer simulators and on the IBM Q Experience. Additionally, data obtained from the D-Wave 2000Q quantum annealer is used for comparison, and it is found that the D-Wave machine outperforms the quantum approximate optimization algorithm executed on a simulator. The overall performance of the quantum approximate optimization algorithm is found to strongly depend on the problem instance.
The quantum approximate optimization algorithm (QAOA) has numerous promising applications in solving the combinatorial optimization problems on near-term Noisy Intermediate Scalable Quantum (NISQ) devices. QAOA has a quantum-classical hybrid structur e. Its quantum part consists of a parameterized alternating operator ansatz, and its classical part comprises an optimization algorithm, which optimizes the parameters to maximize the expectation value of the problem Hamiltonian. This expectation value depends highly on the parameters, this implies that a set of good parameters leads to an accurate solution. However, at large circuit depth of QAOA, it is difficult to achieve global optimization due to the multiple occurrences of local minima or maxima. In this paper, we propose a parameters fixing strategy which gives high approximation ratio on average, even at large circuit depths, by initializing QAOA with the optimal parameters obtained from the previous depths. We test our strategy on the Max-cut problem of certain classes of graphs such as the 3-regular graphs and the Erd{o}s-R{e}nyi graphs.
The quantum approximate optimization algorithm (QAOA) transforms a simple many-qubit wavefunction into one which encodes the solution to a difficult classical optimization problem. It does this by optimizing the schedule according to which two unitar y operators are alternately applied to the qubits. In this paper, this procedure is modified by updating the operators themselves to include local fields, using information from the measured wavefunction at the end of one iteration step to improve the operators at later steps. It is shown by numerical simulation on MAXCUT problems that this decreases the runtime of QAOA very substantially. This improvement appears to increase with the problem size. Our method requires essentially the same number of quantum gates per optimization step as the standard QAOA. Application of this modified algorithm should bring closer the time to quantum advantage for optimization problems.
The next few years will be exciting as prototype universal quantum processors emerge, enabling implementation of a wider variety of algorithms. Of particular interest are quantum heuristics, which require experimentation on quantum hardware for their evaluation, and which have the potential to significantly expand the breadth of quantum computing applications. A leading candidate is Farhi et al.s Quantum Approximate Optimization Algorithm, which alternates between applying a cost-function-based Hamiltonian and a mixing Hamiltonian. Here, we extend this framework to allow alternation between more general families of operators. The essence of this extension, the Quantum Alternating Operator Ansatz, is the consideration of general parametrized families of unitaries rather than only those corresponding to the time-evolution under a fixed local Hamiltonian for a time specified by the parameter. This ansatz supports the representation of a larger, and potentially more useful, set of states than the original formulation, with potential long-term impact on a broad array of application areas. For cases that call for mixing only within a desired subspace, refocusing on unitaries rather than Hamiltonians enables more efficiently implementable mixers than was possible in the original framework. Such mixers are particularly useful for optimization problems with hard constraints that must always be satisfied, defining a feasible subspace, and soft constraints whose violation we wish to minimize. More efficient implementation enables earlier experimental exploration of an alternating operator approach to a wide variety of approximate optimization, exact optimization, and sampling problems. Here, we introduce the Quantum Alternating Operator Ansatz, lay out design criteria for mixing operators, detail mappings for eight problems, and provide brief descriptions of mappings for diverse problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا