ترغب بنشر مسار تعليمي؟ اضغط هنا

The signatures of the resonances of a large Galactic bar in local velocity space

39   0   0.0 ( 0 )
 نشر من قبل Giacomo Monari
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The second data release of the Gaia mission has revealed a very rich structure in local velocity space. In terms of in-plane motions, this rich structure is also seen as multiple ridges in the actions of the axisymmetric background potential of the Galaxy. These ridges are probably related to a combination of effects from ongoing phase-mixing and resonances from the spiral arms and the bar. We have recently developed a method to capture the behaviour of the stellar phase-space distribution function at a resonance, by re-expressing it in terms of a new set of canonical actions and angles variables valid in the resonant region. Here, by properly treating the distribution function at resonances, and by using a realistic model for a slowly rotating large Galactic bar with pattern speed 39 km/s/kpc, we show that no less than six ridges in local action space can be related to resonances with the bar. Two of these at low angular momentum correspond to the corotation resonance, and can be associated to the Hercules moving group in local velocity space. Another one at high angular momentum corresponds to the outer Lindblad resonance, and can tentatively be associated to the velocity structure seen as an arch at high azimuthal velocities in Gaia data. The other ridges are associated to the 3:1, 4:1 and 6:1 resonances. The latter can be associated to the so-called horn of the local velocity distribution. While it is clear that effects from spiral arms and incomplete phase-mixing related to external perturbations also play a role in shaping the complex kinematics revealed by Gaia data, the present work demonstrates that, contrary to common misconceptions, the bar alone can create multiple prominent ridges in velocity and action space.

قيم البحث

اقرأ أيضاً

The Galactic disk exhibits complex chemical and dynamical substructure thought to be induced by the the bar, spiral arms, and satellites. Here, we explore the chemical signatures of bar resonances in action and velocity space and characterize the dif ferences between the signatures of corotation and higher-order resonances using test particle simulations. Thanks to recent surveys, we now have large homogeneous datasets containing metallicities and kinematics of stars outside the solar neighborhood. We compare the simulations to the observational data from Gaia EDR3 and LAMOST DR5, and find weak evidence for a slow bar that associates the hat moving group with its outer Lindblad resonance and Hercules with corotation. While constraints from current data are limited by their spatial footprint, stars closer in azimuth than the Sun to the bars minor axis show much stronger chemodynamical signatures of the bars outer Lindblad and corotation resonances in test particle simulations. Future datasets with greater azimuthal coverage, including the final Gaia data release, will allow reliable chemodynamical identification of bar resonances.
Bars are common galactic structures in the local universe that play an important role in the secular evolution of galaxies, including the Milky Way. In particular, the velocity distribution of individual stars in our galaxy is useful to shed light on stellar dynamics, and provides information complementary to that inferred from the integrated light of external galaxies. However, since a wide variety of models reproduce the distribution of velocity and the velocity dispersion observed in the Milky Way, we look for signatures of the bar on higher-order moments of the line-of-sight velocity ($V_{los}$) distribution. We make use of two different numerical simulations --one that has developed a bar and one that remains nearly axisymmetric-- to compare them with observations in the latest APOGEE data release (SDSS DR14). This comparison reveals three interesting structures that support the notion that the Milky Way is a barred galaxy. A high skewness region found at positive longitudes constrains the orientation angle of the bar, and is incompatible with the orientation of the bar at $ell=0^circ$ proposed in previous studies. We also analyse the $V_{los}$ distributions in three regions, and introduce the Hellinger distance to quantify the differences among them. Our results show a strong non-Gaussian distribution both in the data and in the barred model, confirming the qualitative conclusions drawn from the velocity maps. In contrast to earlier work, we conclude it is possible to infer the presence of the bar from the kurtosis distribution.
Our location in the Milky Way provides an exceptional opportunity to gain insight on the galactic evolution processes, and complement the information inferred from observations of external galaxies. Since the Milky Way is a barred galaxy, the study o f motions of individual stars in the bulge and disc is useful to understand the role of the bar. The Gaia mission enables such study by providing the most precise parallaxes and proper motions to date. In this theoretical work, we explore the effects of the bar on the distribution of higher-order moments --the skewness and kurtosis-- of the proper motions by confronting two simulated galaxies, one with a bar and one nearly axisymmetric, with observations from the latest Gaia data release (GaiaDR2). We introduce the code ASGAIA to account for observational errors of Gaia in the kinematical structures predicted by the numerical models. As a result, we find clear imprints of the bar in the skewness distribution of the longitudinal proper motion $mu_ell$ in GaiaDR2, as well as other features predicted for the next Gaia data releases.
The Milky Ways bar dominates the orbits of stars and the flow of cold gas in the inner Galaxy, and is therefore of major importance for Milky Way dynamical studies in the Gaia era. Here we discuss the pronounced peanut shape of the Galactic bulge tha t has resulted from recent star count analysis, in particular from the VVV survey. We also discuss the question whether the Milky Way has an inner disky pseudo-bulge, and show preliminary evidence for a continuous transition in vertical scale-height from the peanut bulge-bar to the planar long bar.
309 - Alis J. Deason 2019
We model the fastest moving (v_tot > 300 km/s) local (D < 3 kpc) halo stars using cosmological simulations and 6-dimensional Gaia data. Our approach is to use our knowledge of the assembly history and phase-space distribution of halo stars to constra in the form of the high velocity tail of the stellar halo. Using simple analytical models and cosmological simulations, we find that the shape of the high velocity tail is strongly dependent on the velocity anisotropy and number density profile of the halo stars --- highly eccentric orbits and/or shallow density profiles have more extended high velocity tails. The halo stars in the solar vicinity are known to have a strongly radial velocity anisotropy, and it has recently been shown the origin of these highly eccentric orbits is the early accretion of a massive (M_star ~ 10^9 M_Sun) dwarf satellite. We use this knowledge to construct a prior on the shape of the high velocity tail. Moreover, we use the simulations to define an appropriate outer boundary of 2r_200, beyond which stars can escape. After applying our methodology to the Gaia data, we find a local (r_0=8.3 kpc) escape speed of v_esc(r_0) = 528(+24,-25) km/s. We use our measurement of the escape velocity to estimate the total Milky Way mass, and dark halo concentration: M_200,tot = 1.00(+0.31,-0.24) x 10^12 M_Sun, c_200 = 10.9(+4.4,-3.3). Our estimated mass agrees with recent results in the literature that seem to be converging on a Milky Way mass of M_200,tot ~ 10^12 M_Sun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا