ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of the Galactic bar on stellar kinematics unveiled by APOGEE

237   0   0.0 ( 0 )
 نشر من قبل Pedro Alonso Palicio
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bars are common galactic structures in the local universe that play an important role in the secular evolution of galaxies, including the Milky Way. In particular, the velocity distribution of individual stars in our galaxy is useful to shed light on stellar dynamics, and provides information complementary to that inferred from the integrated light of external galaxies. However, since a wide variety of models reproduce the distribution of velocity and the velocity dispersion observed in the Milky Way, we look for signatures of the bar on higher-order moments of the line-of-sight velocity ($V_{los}$) distribution. We make use of two different numerical simulations --one that has developed a bar and one that remains nearly axisymmetric-- to compare them with observations in the latest APOGEE data release (SDSS DR14). This comparison reveals three interesting structures that support the notion that the Milky Way is a barred galaxy. A high skewness region found at positive longitudes constrains the orientation angle of the bar, and is incompatible with the orientation of the bar at $ell=0^circ$ proposed in previous studies. We also analyse the $V_{los}$ distributions in three regions, and introduce the Hellinger distance to quantify the differences among them. Our results show a strong non-Gaussian distribution both in the data and in the barred model, confirming the qualitative conclusions drawn from the velocity maps. In contrast to earlier work, we conclude it is possible to infer the presence of the bar from the kurtosis distribution.



قيم البحث

اقرأ أيضاً

We investigate models of the Milky Way disc taking into account simultaneously the bar and a two-armed quasi-static spiral pattern. Away from major resonance overlaps, the mean stellar radial motions in the plane are essentially a linear superpositio n of the isolated effects of the bar and spirals. Thus, provided the bar is strong enough, even in the presence of spiral arms, these mean radial motions are predominantly affected by the Galactic bar for large scale velocity fluctuations. This is evident when comparing the peculiar line-of-sight velocity power spectrum of our coupled models with bar-only models. However, we show how forthcoming spectroscopic surveys could disentangle bar-only non-axisymmetric models of the Galaxy from models in which spiral arms have a significant amplitude. We also point out that overlaps of low-order resonances are sufficient to enhance stellar churning within the disc, even when the spirals amplitude is kept constant. Nevertheless, for churning to be truly non-local, stronger or (more likely) transient amplitudes would be needed: otherwise the disc is actually mostly unaffected by churning in the present models. Finally, regarding vertical breathing modes, the combined effect of the bar and spirals on vertical motions is a clear non-linear superposition of the isolated effects of both components, significantly superseding the linear superposition of modes produced by each perturber separately, thereby providing an additional effect to consider when analysing the observed breathing mode of the Galactic disc in the extended Solar neighbourhood.
Much of the inner Milky Ways (MW) global rotation and velocity dispersion patterns can be reproduced by models of secularly-evolved, bar-dominated bulges. More sophisticated constraints, including the higher moments of the line-of-sight velocity dist ributions (LOSVDs) and limits on the chemodynamical substructure, are critical for interpreting observations of the unresolved inner regions of extragalactic systems and for placing the MW in context with other galaxies. Here, we use SDSS-APOGEE data to develop these constraints, by presenting the first maps of the LOSVD skewness and kurtosis of metal-rich and metal-poor inner MW stars (divided at [Fe/H] = -0.4), and comparing the observed patterns to those that are seen both in N-body models and in extragalactic bars. Despite closely matching the mean velocity and dispersion, the models do not reproduce the observed LOSVD skewness patterns in different ways, which demonstrates that our understanding of the detailed orbital structure of the inner MW remains an important regime for improvement. We find evidence in the MW of the skewness-velocity correlation that is used as a diagnostic of extragalactic bar/bulges. This correlation appears in metal-rich stars only, providing further evidence for different evolutionary histories of chemically differentiated populations. We connect these skewness measurements to previous work on high-velocity peaks in the inner Galaxy, confirming the presence of that phenomenon, and we quantify the cylindrical rotation of the inner Galaxy, finding that the latitude-independent rotation vanishes outside of lon ~ 7 deg. Finally, we evaluate the MW data in light of select extragalactic bar diagnostics and discuss progress and challenges of using the MW as a resolved analog of unresolved stellar populations.
Our location in the Milky Way provides an exceptional opportunity to gain insight on the galactic evolution processes, and complement the information inferred from observations of external galaxies. Since the Milky Way is a barred galaxy, the study o f motions of individual stars in the bulge and disc is useful to understand the role of the bar. The Gaia mission enables such study by providing the most precise parallaxes and proper motions to date. In this theoretical work, we explore the effects of the bar on the distribution of higher-order moments --the skewness and kurtosis-- of the proper motions by confronting two simulated galaxies, one with a bar and one nearly axisymmetric, with observations from the latest Gaia data release (GaiaDR2). We introduce the code ASGAIA to account for observational errors of Gaia in the kinematical structures predicted by the numerical models. As a result, we find clear imprints of the bar in the skewness distribution of the longitudinal proper motion $mu_ell$ in GaiaDR2, as well as other features predicted for the next Gaia data releases.
Tidal debris from infalling satellites can leave observable structure in the phase-space distribution of the Galactic halo. Such substructure can be manifest in the spatial and/or velocity distributions of the stars in the halo. This paper focuses on a class of substructure that is purely kinematic in nature, with no accompanying spatial features. To study its properties, we use a simulated stellar halo created by dynamically populating the Via Lactea II high-resolution N-body simulation with stars. A significant fraction of the stars in the inner halo of Via Lactea share a common speed and metallicity, despite the fact that they are spatially diffuse. We argue that this kinematic substructure is a generic feature of tidal debris from older mergers and may explain the detection of radial-velocity substructure in the inner halo made by the Sloan Extension for Galactic Understanding and Exploration. The GAIA satellite, which will provide the proper motions of an unprecedented number of stars, should further characterize the kinematic substructure in the inner halo. Our study of the Via Lactea simulation suggests that the stellar halo can be used to map the speed distribution of the local dark-matter halo, which has important consequences for dark-matter direct-detection experiments.
The SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey provides precise chemical abundances of 18 chemical elements for $sim$ 176,000 red giant stars distributed over much of the Milky Way Galaxy (MW), and includes observa tions of the core of the Sagittarius dwarf spheroidal galaxy (Sgr). The APOGEE chemical abundance patterns of Sgr have revealed that it is chemically distinct from the MW in most chemical elements. We employ a emph{k}-means clustering algorithm to 6-dimensional chemical space defined by [(C+N)/Fe], [O/Fe], [Mg/Fe], [Al/Fe], [Mn/Fe], and [Ni/Fe] to identify 62 MW stars in the APOGEE sample that have Sgr-like chemical abundances. Of the 62 stars, 35 have emph{Gaia} kinematics and positions consistent with those predicted by emph{N}-body simulations of the Sgr stream, and are likely stars that have been stripped from Sgr during the last two pericenter passages ($<$ 2 Gyr ago). Another 20 of the 62 stars exhibit chemical abundances indistinguishable from the Sgr stream stars, but are on highly eccentric orbits with median $r_{rm apo} sim $ 25 kpc. These stars are likely the `accreted halo population thought to be the result of a separate merger with the MW 8-11 Gyr ago. We also find one hypervelocity star candidate. We conclude that Sgr was enriched to [Fe/H] $sim$ -0.2 before its most recent pericenter passage. If the `accreted halo population is from one major accretion event, then this progenitor galaxy was enriched to at least [Fe/H] $sim$ -0.6, and had a similar star formation history to Sgr before merging.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا