ﻻ يوجد ملخص باللغة العربية
Measurements of the fine-structure constant alpha require methods from across subfields and are thus powerful tests of the consistency of theory and experiment in physics. Using the recoil frequency of cesium-133 atoms in a matter-wave interferometer, we recorded the most accurate measurement of the fine-structure constant to date: alpha = 1/137.035999046(27) at 2.0 x 10^-10 accuracy. Using multiphoton interactions (Bragg diffraction and Bloch oscillations), we demonstrate the largest phase (12 million radians) of any Ramsey-Borde interferometer and control systematic effects at a level of 0.12 parts per billion. Comparison with Penning trap measurements of the electron gyromagnetic anomaly ge-2 via the Standard Model of particle physics is now limited by the uncertainty in ge-2; a 2.5 sigma tension rejects dark photons as the reason for the unexplained part of the muons magnetic moment at a 99 percent confidence level. Implications for dark-sector candidates and electron substructure may be a sign of physics beyond the Standard Model that warrants further investigation.
Radio-frequency electric-dipole transitions between nearly degenerate, opposite parity levels of atomic dysprosium (Dy) were monitored over an eight-month period to search for a variation in the fine-structure constant, $alpha$. The data provide a ra
Radio-frequency E1 transitions between nearly degenerate, opposite parity levels of atomic dysprosium were monitored over an eight month period to search for a variation in the fine-structure constant. During this time period, data were taken at diff
A means to extract the fine-structure constant $alpha$ from precision spectroscopic data on one-electron ions is presented. We show that in an appropriately weighted difference of the bound-electron $g$ factor and the ground state energy, nuclear str
Quasar absorption spectral data indicate the presence of a spatial gradient in the electromagnetic fine-structure constant $alpha$ on cosmological length scales. We point out that experiments with accelerometers, including torsion pendula and atom in
We study electronic transitions in highly-charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, alpha. The transitions are in the optical despite t