ﻻ يوجد ملخص باللغة العربية
The task of large-scale retrieval-based image localization is to estimate the geographical location of a query image by recognizing its nearest reference images from a city-scale dataset. However, the general public benchmarks only provide noisy GPS labels associated with the training images, which act as weak supervisions for learning image-to-image similarities. Such label noise prevents deep neural networks from learning discriminative features for accurate localization. To tackle this challenge, we propose to self-supervise image-to-region similarities in order to fully explore the potential of difficult positive images alongside their sub-regions. The estimated image-to-region similarities can serve as extra training supervision for improving the network in generations, which could in turn gradually refine the fine-grained similarities to achieve optimal performance. Our proposed self-enhanced image-to-region similarity labels effectively deal with the training bottleneck in the state-of-the-art pipelines without any additional parameters or manual annotations in both training and inference. Our method outperforms state-of-the-arts on the standard localization benchmarks by noticeable margins and shows excellent generalization capability on multiple image retrieval datasets.
We introduce RP2K, a new large-scale retail product dataset for fine-grained image classification. Unlike previous datasets focusing on relatively few products, we collect more than 500,000 images of retail products on shelves belonging to 2000 diffe
Retrieving content relevant images from a large-scale fine-grained dataset could suffer from intolerably slow query speed and highly redundant storage cost, due to high-dimensional real-valued embeddings which aim to distinguish subtle visual differe
Fine-grained image classification is to recognize hundreds of subcategories in each basic-level category. Existing methods employ discriminative localization to find the key distinctions among subcategories. However, they generally have two limitatio
Although recent advances in deep learning accelerated an improvement in a weakly supervised object localization (WSOL) task, there are still challenges to identify the entire body of an object, rather than only discriminative parts. In this paper, we
We propose a novel approach to enhance the discriminability of Convolutional Neural Networks (CNN). The key idea is to build a tree structure that could progressively learn fine-grained features to distinguish a subset of classes, by learning feature