ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of Lie group homomorphisms and Lie subgroups

106   0   0.0 ( 0 )
 نشر من قبل Cristian Camilo C\\'ardenas
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss a Moser type argument to show when a deformation of a Lie group homomorphism and of a Lie subgroup is trivial. For compact groups we obtain stability results.

قيم البحث

اقرأ أيضاً

81 - Eugene Lerman 2018
A Lie 2-group $G$ is a category internal to the category of Lie groups. Consequently it is a monoidal category and a Lie groupoid. The Lie groupoid structure on $G$ gives rise to the Lie 2-algebra $mathbb{X}(G)$ of multiplicative vector fields, see ( Berwick-Evans -- Lerman). The monoidal structure on $G$ gives rise to a left action of the 2-group $G$ on the Lie groupoid $G$, hence to an action of $G$ on the Lie 2-algebra $mathbb{X}(G)$. As a result we get the Lie 2-algebra $mathbb{X}(G)^G$ of left-invariant multiplicative vector fields. On the other hand there is a well-known construction that associates a Lie 2-algebra $mathfrak{g}$ to a Lie 2-group $G$: apply the functor $mathsf{Lie}: mathsf{Lie Groups} to mathsf{Lie Algebras}$ to the structure maps of the category $G$. We show that the Lie 2-algebra $mathfrak{g}$ is isomorphic to the Lie 2-algebra $mathbb{X}(G)^G$ of left invariant multiplicative vector fields.
Endowing differentiable functions from a compact manifold to a Lie group with the pointwise group operations one obtains the so-called current groups and, as a special case, loop groups. These are prime examples of infinite-dimensional Lie groups mod elled on locally convex spaces. In the present paper, we generalise this construction and show that differentiable mappings on a compact manifold (possibly with boundary) with values in a Lie groupoid form infinite-dimensional Lie groupoids which we call current Lie groupoids. We then study basic differential geometry and Lie theory for these Lie groupoids of mappings. In particular, we show that certain Lie groupoid properties, like being a proper etale Lie groupoid, are inherited by the current groupoid. Furthermore, we identify the Lie algebroid of a current Lie groupoid as a current Lie algebroid (analogous to the current Lie algebra associated to a current Lie group). To establish these results, we study superposition operators given by postcomposition with a fixed function, between manifolds of $C^ell$-functions. Under natural hypotheses, these operators turn out to be a submersion (an immersion, an embedding, proper, resp., a local diffeomorphism) if so is the underlying map. These results are new in their generality and of independent interest.
We study deformations of Lie groupoids by means of the cohomology which controls them. This cohomology turns out to provide an intrinsic model for the cohomology of a Lie groupoid with values in its adjoint representation. We prove several fundamenta l properties of the deformation cohomology including Morita invariance, a van Est theorem, and a vanishing result in the proper case. Combined with Mosers deformation arguments for groupoids, we obtain several rigidity and normal form results.
We present Lie group integrators for nonlinear stochastic differential equations with non-commutative vector fields whose solution evolves on a smooth finite dimensional manifold. Given a Lie group action that generates transport along the manifold, we pull back the stochastic flow on the manifold to the Lie group via the action, and subsequently pull back the flow to the corresponding Lie algebra via the exponential map. We construct an approximation to the stochastic flow in the Lie algebra via closed operations and then push back to the Lie group and then to the manifold, thus ensuring our approximation lies in the manifold. We call such schemes stochastic Munthe-Kaas methods after their deterministic counterparts. We also present stochastic Lie group integration schemes based on Castell--Gaines methods. These involve using an underlying ordinary differential integrator to approximate the flow generated by a truncated stochastic exponential Lie series. They become stochastic Lie group integrator schemes if we use Munthe-Kaas methods as the underlying ordinary differential integrator. Further, we show that some Castell--Gaines methods are uniformly more accurate than the corresponding stochastic Taylor schemes. Lastly we demonstrate our methods by simulating the dynamics of a free rigid body such as a satellite and an autonomous underwater vehicle both perturbed by two independent multiplicative stochastic noise processes.
A VB-algebroid is a vector bundle object in the category of Lie algebroids. We attach to every VB-algebroid a differential graded Lie algebra and we show that it controls deformations of the VB-algebroid structure. Several examples and applications a re discussed. This is the first in a series of papers devoted to deformations of vector bundles and related structures over differentiable stacks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا