ﻻ يوجد ملخص باللغة العربية
Quasicritical exponents of one-dimensional models displaying a quasitransition at finite temperatures are examined in detail. The quasitransition is characterized by intense sharp peaks in physical quantities such as specific heat and magnetic susceptibility, which are reminiscent of divergences accompanying a continuous (second-order) phase transition. The question whether these robust finite peaks follow some power law around the quasicritical temperature is addressed. Although there is no actual divergence of these quantities at a quasicritical temperature, a power-law behavior fits precisely both ascending as well as descending part of the peaks in the vicinity but not too close to a quasicritical temperature. The specific values of the quasicritical exponents are rigorously calculated for a class of one-dimensional models (e.g. Ising-XYZ diamond chain, coupled spin-electron double-tetrahedral chain, Ising-XXZ two-leg ladder, and Ising-XXZ three-leg tube), whereas the same set of quasicritical exponents implies a certain `universality of quasitransitions of one-dimensional models. Specifically, the values of the quasicritical exponents for one-dimensional models are: $alpha=alpha=3$ for the specific heat, $gamma=gamma=3$ for the susceptibility and $ u= u=1$ for the correlation length.
We study measures of decoherence and thermalization of a quantum system $S$ in the presence of a quantum environment (bath) $E$. The whole system is prepared in a canonical thermal state at a finite temperature. Applying perturbation theory with resp
We introduce a new universality class of one-dimensional unimodal dissipative maps. The new family, from now on referred to as the ($z_1,z_2$)-{it logarithmic map}, corresponds to a generalization of the $z$-logistic map. The Feigenbaum-like constant
We provide general formulae for the configurational exponents of an arbitrary polymer network connected to the surface of an arbitrary wedge of the two-dimensional plane, where the surface is allowed to assume a general mixture of boundary conditions
Renormalization group theory does not restrict the from of continuous variation of critical exponents which occurs in presence of a marginal operator. However, the continuous variation of critical exponents, observed in different contexts, usually fo
Singularities of dynamical large-deviation functions are often interpreted as the signal of a dynamical phase transition and the coexistence of distinct dynamical phases, by analogy with the correspondence between singularities of free energies and e