ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonextensivity at the edge of chaos of a new universality class of one-dimensional unimodal dissipative maps

106   0   0.0 ( 0 )
 نشر من قبل Guiomar Ruiz Prof.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Guiomar Ruiz




اسأل ChatGPT حول البحث

We introduce a new universality class of one-dimensional unimodal dissipative maps. The new family, from now on referred to as the ($z_1,z_2$)-{it logarithmic map}, corresponds to a generalization of the $z$-logistic map. The Feigenbaum-like constants of these maps are determined. It has been recently shown that the probability density of sums of iterates at the edge of chaos of the $z$-logistic map is numerically consistent with a $q$-Gaussian, the distribution which, under appropriate constraints, optimizes the nonadditive entropy $S_q$. We focus here on the presently generalized maps to check whether they constitute a new universality class with regard to $q$-Gaussian attractor distributions. We also study the generalized $q$-entropy production per unit time on the new unimodal dissipative maps, both for strong and weak chaotic cases. The $q$-sensitivity indices are obtained as well. Our results are, like those for the $z$-logistic maps, numerically compatible with the $q$-generalization of a Pesin-like identity for ensemble averages.



قيم البحث

اقرأ أيضاً

We numerically investigate the sensitivity to initial conditions of asymmetric unimodal maps $x_{t+1} = 1-a|x_t|^{z_i}$ ($i=1,2$ correspond to $x_t>0$ and $x_t<0$ respectively, $z_i >1$, $0<aleq 2$, $t=0,1,2,...$) at the edge of chaos. We employ thre e distinct algorithms to characterize the power-law sensitivity to initial conditions at the edge of chaos, namely: direct measure of the divergence of initially nearby trajectories, the computation of the rate of increase of generalized nonextensive entropies $S_q$ and multifractal analysis. The first two methods provide consistent estimates for the exponent governing the power-law sensitivity. In addition to this, we verify that the multifractal analysis does not provide precise estimates of the singularity spectrum $f(alpha)$, specially near its extremal points. Such feature prevents to perform a fine check of the accuracy of the scaling relation between $f(alpha)$ and the entropic index $q$, thus restricting the applicability of the multifractal analysis for studing the sensitivity to initial conditions in this class of asymmetric maps.
We focus on a linear chain of $N$ first-neighbor-coupled logistic maps at their edge of chaos in the presence of a common noise. This model, characterised by the coupling strength $epsilon$ and the noise width $sigma_{max}$, was recently introduced b y Pluchino et al [Phys. Rev. E {bf 87}, 022910 (2013)]. They detected, for the time averaged returns with characteristic return time $tau$, possible connections with $q$-Gaussians, the distributions which optimise, under appropriate constraints, the nonadditive entropy $S_q$, basis of nonextensive statistics mechanics. We have here a closer look on this model, and numerically obtain probability distributions which exhibit a slight asymmetry for some parameter values, in variance with simple $q$-Gaussians. Nevertheless, along many decades, the fitting with $q$-Gaussians turns out to be numerically very satisfactory for wide regions of the parameter values, and we illustrate how the index $q$ evolves with $(N, tau, epsilon, sigma_{max})$. It is nevertheless instructive on how careful one must be in such numerical analysis. The overall work shows that physical and/or biological systems that are correctly mimicked by the Pluchino et al model are thermostatistically related to nonextensive statistical mechanics when time-averaged relevant quantities are studied.
For a family of logistic-like maps, we investigate the rate of convergence to the critical attractor when an ensemble of initial conditions is uniformly spread over the entire phase space. We found that the phase space volume occupied by the ensemble W(t) depicts a power-law decay with log-periodic oscillations reflecting the multifractal character of the critical attractor. We explore the parametric dependence of the power-law exponent and the amplitude of the log-periodic oscillations with the attractors fractal dimension governed by the inflexion of the map near its extremal point. Further, we investigate the temporal evolution of W(t) for the circle map whose critical attractor is dense. In this case, we found W(t) to exhibit a rich pattern with a slow logarithmic decay of the lower bounds. These results are discussed in the context of nonextensive Tsallis entropies.
The sensitivity to initial conditions and relaxation dynamics of two-dimensional maps are analyzed at the edge of chaos, along the lines of nonextensive statistical mechanics. We verify the dual nature of the entropic index for the Henon map, one ($q _{sen}<1$) related to its sensitivity to initial conditions properties, and the other, graining-dependent ($q_{rel}(W)>1$), related to its relaxation dynamics towards its stationary state attractor. We also corroborate a scaling law between these two indexes, previously found for $z$-logistic maps. Finally we perform a preliminary analysis of a linearized version of the Henon map (the smoothed Lozi map). We find that the sensitivity properties of all these $z$-logistic, Henon and Lozi maps are the same, $q_{sen}=0.2445...$
For a family of logistic-like maps, we investigate the rate of convergence to the critical attractor when an ensemble of initial conditions is uniformly spread over the entire phase space. We found that the phase space volume occupied by the ensemble $W(t)$ depicts a power-law decay with log-periodic oscillations reflecting the multifractal character of the critical attractor. We explore the parametric dependence of the power-law exponent and the amplitude of the log-periodic oscillations with the attractors fractal dimension governed by the inflexion of the map near its extremal point. Further, we investigate the temporal evolution of $W(t)$ for the circle map whose critical attractor is dense. In this case, we found $W(t)$ to exhibit a rich pattern with a slow logarithmic decay of the lower bounds. These results are discussed in the context of non-extensive Tsallis entropies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا