ﻻ يوجد ملخص باللغة العربية
The multiplicities of light (anti)nuclei were measured recently by the ALICE collaboration in Pb+Pb collisions at the center-of-mass collision energy $sqrt{s_{NN}} =2.76$ TeV. Surprisingly, the hadron resonance gas model is able to perfectly describe their multiplicities under various assumptions. For instance, one can consider the (anti)nuclei with a vanishing hard-core radius (as the point-like particles) or with the hard-core radius of proton, but the fit quality is the same for these assumptions. In this paper we assume the hard-core radius of nuclei consisting of $A$ baryons or antibaryons to follow the simple law $R(A) = R_b (A)^frac{1}{3}$, where $R_b$ is the hard-core radius of nucleon. To implement such a relation into the hadron resonance gas model we employ the induced surface tension concept and analyze the hadronic and (anti)nuclei multiplicities measured by the ALICE collaboration. The hadron resonance gas model with the induced surface tension allows us to verify different scenarios of chemical freeze-out of (anti)nuclei. It is shown that the most successful description of hadrons can be achieved at the chemical freeze-out temperature $T_h=150$ MeV, while the one for all (anti)nuclei is $T_A=168.5$ MeV. Possible explanations of this high temperature of (anti)nuclei chemical freeze-out are discussed.
We present an overview of a proposal in relativistic proton-proton ($pp$) collisions emphasizing the thermal or kinetic freeze-out stage in the framework of the Tsallis distribution. In this paper we take into account the chemical potential present i
We present an elaborate version of the hadron resonance gas model with the combined treatment of separate chemical freeze-outs for strange and non-strange hadrons and with an additional $gamma_{s}$ factor which accounts for the remaining strange part
The production of light (anti-)nuclei and (anti-)hypertriton in a recent collsion system size scan program proposed for the STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is investigated by using the dynamically constrained phase-space
The nuclear modification factors ($R_{AA}$) of $pi^{pm}, p(bar p)$, and $d(bar d)$ with $|y|<0.5, p_T<20.0$~GeV/c in peripheral (40-60%) and central (0-5%) Pb-Pb collisions at $sqrt {s_{NN}}=2.76$ TeV have been studied using the parton and hadron cas
The Hadron Resonance Gas Model with two chemical freeze-outs, connected by conservation laws is considered. We are arguing that the chemical freeze-out of strange hadrons should occur earlier than the chemical freeze-out of non-strange hadrons. The h