ﻻ يوجد ملخص باللغة العربية
The Hadron Resonance Gas Model with two chemical freeze-outs, connected by conservation laws is considered. We are arguing that the chemical freeze-out of strange hadrons should occur earlier than the chemical freeze-out of non-strange hadrons. The hadron multiplicities measured in the heavy ion collisions for the center of mass energy range 2.7 - 200 GeV are described well by such a model. Based on a success of such an approach, a radical way to improve the Hadron Resonance Gas Model performance is suggested. Thus, we suggest to identify the hadronic reactions that freeze-out noticeably earlier or later that most of the others reactions (for different collision energies they may be different) and to consider a separate freeze-out for them.
We calculate the non-normalized moments of the particle multiplicity within the framework of the hadron resonance gas (HRG) model. At finite chemical potential $mu$, a non-monotonic behavior is observed in the thermal evolution of third order moment
The chemical freeze-out of hadrons created in the high energy nuclear collisions is studied within the realistic version of the hadron resonance gas model. The chemical non-equilibrium of strange particles is accounted via the usual $gamma_{s}$ facto
We study chemical freeze-out parameters for heavy-ion collisions by performing two different thermal analyses. We analyze results from thermal fits for particle yields, as well as, net-charge fluctuations in order to characterize the chemical freeze-
In this article, we will present a systematic analysis of transverse momentum spectra of the strange hadron in different multiplicity events produced in pp collision at $sqrt{s}$ = 7 TeV, pPb collision at $sqrt{s_{NN}}$ = 5.02 TeV and PbPb collision
We calculate the mean-over-variance ratio of the net-kaon fluctuations in the Hadron Resonance Gas (HRG) Model for the five highest energies of the RHIC Beam Energy Scan (BES) for different particle data lists. We compare these results with the lates