ﻻ يوجد ملخص باللغة العربية
We propose a physical mechanism to generate and selectively amplify anisotropic Rudermann-Kittel-Kasuya-Yosida (RKKY) interactions between two local spins. The idea is to combine the deflection of the carrier velocity by a P-N interface and the locking of this velocity to the carrier spin orientation via spin-orbit coupling. We provide analytical and numerical results to demonstrate this mechanism on the surface of a topological insulator P-N junction. This work identifies the P-N interface as a second knob which, together with the carrier density, enables independent control of the strength and anisotropy of the RKKY interaction over a wide range. These findings may be relevant to scalable quantum computation and two-impurity quantum criticality.
We analyse a system composed of a qubit coupled to electromagnetic fields of two high quality quantum oscillators. Particular realization of such a system is the superconducting qubit coupled to a transmission-line resonator driven by two signals wit
We study RKKY interactions for magnetic impurities on graphene in situations where the electronic spectrum is in the form of Landau levels. Two such situations are considered: non-uniformly strained graphene, and graphene in a real magnetic field. RK
We study the stabilization of an isolated magnetic skyrmion in a magnetic monolayer on a nonmagnetic conducting substrate via the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction. Two different types of the substrate are considered, usual no
The topic of quantum noise has become extremely timely due to the rise of quantum information physics and the resulting interchange of ideas between the condensed matter and AMO/quantum optics communities. This review gives a pedagogical introduction
The dynamics of itinerant electrons in topological insulator (TI) thin films is investigated using a multi-band decomposition approach. We show that the electron trajectory in the 2D film is anisotropic and confined within a characteristic region. Re