ﻻ يوجد ملخص باللغة العربية
In this article, global stabilization results for the two dimensional (2D) viscous Burgers equation, that is, convergence of unsteady solution to its constant steady state solution with any initial data, are established using a nonlinear Neumann boundary feedback control law. Then, applying $C^0$-conforming finite element method in spatial direction, optimal error estimates in $L^infty(L^2)$ and in $L^infty(H^1)$- norms for the state variable and convergence result for the boundary feedback control law are derived. All the results preserve exponential stabilization property. Finally, several numerical experiments are conducted to confirm our theoretical findings.
Global stabilization of viscous Burgers equation around constant steady state solution has been discussed in the literature. The main objective of this paper is to show global stabilization results for the 2D forced viscous Burgers equation around a
In this article, global stabilization results for the Benjamin-Bona-Mahony-Burgers (BBM-B) type equations are obtained using nonlinear Neumann boundary feedback control laws. Based on the $C^0$-conforming finite element method, global stabilization r
There exist many ways to stabilize an infinite-dimensional linear autonomous control systems when it is possible. Anyway, finding an exponentially stabilizing feedback control that is as simple as possible may be a challenge. The Riccati theory provi
We propose two different discrete formulations for the weak imposition of the Neumann boundary conditions of the Darcy flow. The Raviart-Thomas mixed finite element on both triangular and quadrilateral meshes is considered for both methods. One is a
In this paper, we apply the constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) to first solving a nonlinear poroelasticity problem. The arising system consists of a nonlinear pressure equation and a nonlinear stres