ﻻ يوجد ملخص باللغة العربية
Quantum fluids of light are an emerging platform for energy efficient signal processing, ultra-sensitive interferometry and quantum simulators at elevated temperatures. Here we demonstrate the optical control of the topological excitations induced in a large polariton condensate, realising the bosonic analog of a long Josephson junction and reporting the first observation of bosonic Josephson vortices. When a phase difference is imposed at the boundaries of the condensate, two extended regions become separated by a sharp $pi$-slippage of the phase and a solitonic depletion of the density, forming an insulating barrier with a suppressed order parameter. The superfluid behavior, that is a smooth phase gradient across the system instead of the sharp phase jump, is recovered at higher polariton densities and it is mediated by the nucleation of Josephson vortices within the barrier. Our results contribute to the understanding of dissipation and stability of elementary excitations in macroscopic quantum systems.
We consider two concentric rings formed by bosonic condensates of exciton-polaritons. A circular superfluid flow of polaritons in one of the rings can be manipulated by acting upon the second annular polariton condensate. The complex coupling between
We report on the observation of spontaneous coherent oscillations in a microcavity polariton bosonic Josephson junction. The condensation of exciton polaritons takes place under incoherent excitation in a disordered environment, where double potentia
Atomtronics has the potential for engineering new types of functional devices, such as Josephson junctions (JJs). Previous studies have mainly focused on JJs whose ground states have 0 or $pi $ superconducting phase difference across the junctions, w
We investigate finite-size quantum effects in the dynamics of $N$ bosonic particles which are tunneling between two sites adopting the two-site Bose-Hubbard model. By using time-dependent atomic coherent states (ACS) we extend the standard mean-field
We study the emergence of dissipation in an atomic Josephson junction between weakly-coupled superfluid Fermi gases. We find that vortex-induced phase slippage is the dominant microscopic source of dissipation across the BEC-BCS crossover. We explore