ترغب بنشر مسار تعليمي؟ اضغط هنا

Excited mesons, baryons, glueballs and tetraquarks: Predictions of the Holography Inspired Stringy Hadron model

63   0   0.0 ( 0 )
 نشر من قبل Dorin Weissman
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this note we collect and summarize the predictions of the Holography Inspired Stringy Hadron (HISH) model. We list the masses and widths of predicted excited states across the spectrum, based on placing the different hadrons on the non-linear Regge trajectories of a string with massive endpoints. Our predicted states include: (i) Light, heavy-light and heavy-heavy mesons. (ii) Baryons, including charmed, doubly charmed and bottom baryons. (iii) Glueballs, together with a method to disentangle them from flavorless mesons. (iv) Genuine tetraquarks, which are not molecules of hadrons, and are characterized by their decay into a baryon and an anti-baryon.


قيم البحث

اقرأ أيضاً

Using the newly measured masses of $B_c(1S)$ and $B_c(2S)$ from the CMS Collaboration and the $1S$ hyperfine splitting determined from the lattice QCD as constrains, we calculate the $B_c$ mass spectrum up to the $6S$ multiplet with a nonrelativistic linear potential model. Furthermore, using the wave functions from this model we calculate the radiative transitions between the $B_c$ states within a constituent quark model. For the higher mass $B_c$ states lying above $DB$ threshold, we also evaluate the Okubo-Zweig-Iizuka (OZI) allowed two-body strong decays with the $^{3}P_{0}$ model. Our study indicates that besides there are large potentials for the observations of the low-lying $B_c$ states below the $DB$ threshold via their radiative transitions, some higher mass $B_c$ states, such as $B_c(2^3P_2)$, $B_c(2^3D_1)$, $B_c(3^3D_1)$, $B_c(4^3P_0)$, and the $1F$-wave $B_c$ states, might be first observed in their dominant strong decay channels $DB$, $DB^*$ or $D^*B$ at the LHC for their relatively narrow widths.
We study the scaling of the $^3S_1-^1S_0$ meson mass splitting and the pseudoscalar weak decay constants with the mass of the meson, as seen in the available experimental data. We use an effective light-front QCD-inspired dynamical model regulated at short-distances to describe the valence component of the pseudoscalar mesons. The experimentally known values of the mass splittings, decay constants (from global lattice-QCD averages) and the pion charge form factor up to 4 [GeV/c]$^2$ are reasonably described by the model
We study two- and three-gluon glueballs of $C=+$ using the method of QCD sum rules. We systematically construct their interpolating currents, and find that all the spin-1 currents of $C=+$ vanish. This suggests that the ground-state spin-1 glueballs of $C=+$ do not exist within the relativistic framework. We calculate masses of the two-gluon glueballs with $J^{PC} = 0^{pm+}/2^{pm+}$ and the three-gluon glueballs with $J^{PC} = 0^{pm+}/2^{pm+}$. We propose to search for the $J^{PC} = 0^{-+}/2^{-pm}/3^{pm-}$ three-gluon glueballs in their three-meson decay channels in future BESIII, GlueX, LHC, and PANDA experiments.
In the quasilinear Regge trajectory ansatz, some useful linear mass inequalities, quadratic mass inequalities and quadratic mass equalities are derived for mesons and baryons. Based on these relations, mass ranges of some mesons and baryons are given . The masses of bc-bar and ss-bar belonging to the pseudoscalar, vector and tensor meson multiplets are also extracted. The J^P of the baryon Xi_cc(3520) is assigned to be 1/2^+. The numerical values for Regge slopes and intercepts of the 1/2^+ and 3/2^+ SU(4) baryon trajectories are extracted and the masses of the orbital excited baryons lying on the 1/2^+ and 3/2^+ trajectories are estimated. The J^P assignments of baryons Xi_c(2980), Xi_c(3055), Xi_c(3077) and Xi_c(3123) are discussed. The predictions are in reasonable agreement with the existing experimental data and those suggested in many other different approaches. The mass relations and the predictions may be useful for the discovery of the unobserved meson and baryon states and the J^P assignment of these states.
The parton model relations in conjunction with quark-hadron duality in deep inelastic scattering suggests an asymptotic dominance of quark-diquark type of baryonic excited states with a radial Regge uniformly distributed mass squared spectrum $M_{n}^ 2 = mu^2 n + M_0^2$. We argue that this points to a lineary quark-diquark confining potential. We analyze the radial ($n$) and angular-momentum ($J$) Regge trajectories for all light-quark states with baryon number one listed in the 2016 edition of the Particle Data Tables. The parameters of the mass squared trajectories are obtained by linear regression assuming $Delta M_n^2 sim M_n Gamma_n $ weighted with the width $Gamma_n$ of the resonance and the error analysis is carried out accordingly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا