ترغب بنشر مسار تعليمي؟ اضغط هنا

Two- and three-gluon glueballs of $C=+$

118   0   0.0 ( 0 )
 نشر من قبل Hua-Xing Chen
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study two- and three-gluon glueballs of $C=+$ using the method of QCD sum rules. We systematically construct their interpolating currents, and find that all the spin-1 currents of $C=+$ vanish. This suggests that the ground-state spin-1 glueballs of $C=+$ do not exist within the relativistic framework. We calculate masses of the two-gluon glueballs with $J^{PC} = 0^{pm+}/2^{pm+}$ and the three-gluon glueballs with $J^{PC} = 0^{pm+}/2^{pm+}$. We propose to search for the $J^{PC} = 0^{-+}/2^{-pm}/3^{pm-}$ three-gluon glueballs in their three-meson decay channels in future BESIII, GlueX, LHC, and PANDA experiments.



قيم البحث

اقرأ أيضاً

Inspired by the evidence of the odderon exchange recently observed by the D0 and TOTEM Collaborations, a QCD sum rule investigation is performed to study the odderon as a three-gluon bound state. There may exist six lowest-lying three-gluon odderons with the quantum numbers $J^{PC} = 1/2/3^{pm-}$. We systematically construct their interpolating currents, and calculate their mass spectra. To verify their existence, we propose to search for the spin-3 odderons in their $VVV$ and $VVP$ decay channels directly at LHC, with $V$ and $P$ light vector and pseudoscalar mesons respectively.
We define a regularization-independent momentum-subtraction scheme for the $CP$-odd three-gluon operator at dimension six. This operator appears in effective field theories for heavy physics beyond the Standard Model, describing the indirect effect o f new sources of $CP$-violation at low energies. In a hadronic context, it induces permanent electric dipole moments. The hadronic matrix elements of the three-gluon operator are non-perturbative objects that should ideally be evaluated with lattice QCD. We define a non-perturbative renormalization scheme that can be implemented on the lattice and we compute the scheme transformation to $overline{text{MS}}$ at one loop. Our calculation can be used as an interface to future lattice-QCD calculations of the matrix elements of the three-gluon operator, in order to obtain theoretically robust constraints on physics beyond the Standard Model from measurements of the neutron electric dipole moment.
We present a detailed analysis of the kinetic and mass terms associated with the Landau gauge gluon propagator in the presence of dynamical quarks, and a comprehensive dynamical study of certain special kinematic limits of the three-gluon vertex. Our approach capitalizes on results from recent lattice simulations with (2+1) domain wall fermions, a novel nonlinear treatment of the gluon mass equation, and the nonperturbative reconstruction of the longitudinal three-gluon vertex from its fundamental Slavnov-Taylor identities. Particular emphasis is placed on the persistence of the suppression displayed by certain combinations of the vertex form factors at intermediate and low momenta, already known from numerous pure Yang-Mills studies. One of our central findings is that the inclusion of dynamical quarks moderates the intensity of this phenomenon only mildly, leaving the asymptotic low-momentum behavior unaltered, but displaces the characteristic zero crossing deeper into the infrared region. In addition, the effect of the three-gluon vertex is explored at the level of the renormalization-group invariant combination corresponding to the effective gauge coupling, whose size is considerably reduced with respect to its counterpart obtained from the ghost-gluon vertex. The main upshot of the above considerations is the further confirmation of the tightly interwoven dynamics between the two- and three-point sectors of QCD.
We investigate the gluonic structure of nuclei within a mean-field model of nuclear structure based upon the self-consistent modification of the structure of a bound nucleon, with the nucleon described by the Nambu--Jona-Lasinio model. This approach has been shown to reproduce the European Muon Collaboration (EMC) effect, involving the ratio of the spin-independent structure functions of a heavier nucleus to that of the deuteron. It also predicts a significant nuclear modification for the spin structure functions, known as the polarized EMC effect. Here we report sizeable nuclear modifications of the gluon distributions (a gluon EMC effect) for the ratios of both the unpolarized and polarized gluon distributions in nuclear matter to those of a free nucleon.
Using the instanton picture of the QCD vacuum we compute the nucleon $bar c^Q(t)$ form factor of the quark part of the energy momentum tensor (EMT). This form factor describes the non-conservation of the quark part of EMT and contributes to the quark pressure distribution inside the nucleon. Also it can be interpreted in terms of forces between quark and gluon subsystems inside the nucleon. We show that this form factor is parametrically small in the instanton packing fraction. Numerically we obtain for the nucleon EMT a small value of $bar c^Q(0)simeq 1.4cdot 10^{-2}$ at the low normalisation point of $sim 0.4$ GeV$^2$. This smallness implies interesting physics picture - the forces between quark and gluon mechanical subsystems are smaller than the forces inside each subsystem. The forces from side of gluon subsystem squeeze the quark subsystem - they are compression forces. Additionally, the smallness of $bar c^Q(t)$ might justify Teryaevs equipartition conjecture. We estimate that the contribution of $bar c^Q (t)$ to the pressure distribution inside the nucleon is in the range of 1 -20 % relative to the contribution of the quark $D$-term.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا