ﻻ يوجد ملخص باللغة العربية
Thioformaldehyde is an abundant molecule in various regions of the interstellar medium. However, available laboratory data limit the accuracies of calculated transition frequencies in the submillimeter region, in particular for minor isotopic species. We aim to determine spectroscopic parameters of isotopologs of H2CS that are accurate enough for predictions well into the submillimeter region. We investigated the laboratory rotational spectra of numerous isotopic species in natural isotopic composition almost continuously between 110 and 377 GHz. Individual lines were studied for most species in two frequency regions between 566 and 930 GHz. Further data were obtained for the three most abundant species in the 1290-1390 GHz region. New or improved spectroscopic parameters were determined for seven isotopic species. Quantum-chemical calculations were carried out to evaluate the differences between ground state and equilibrium rotational parameters to derive semi-empirical equilibrium structural parameters. The spectroscopic parameters are accurate enough for predictions well above 1 THz with the exception of H2(13)C(34)S where the predictions should be reliable to around 700 GHz.
We present the analysis of 34 light curves in $V$ and $I$ of 17 giant stars in the globular cluster NGC 3201, to check if such stars are variable and if their variability has some kind of impact on the iron abundance as obtained from spectroscopic me
Cyanamide is one of the few interstellar molecules containing two chemically different N atoms. It was detected recently toward the solar-type protostar IRAS 16293-2422 B together with H$_2$N$^{13}$CN and HDNCN in the course of the Atacama Large Mill
Aims: To trace the radial and vertical spatial distribution of H2CS, a key species of the S-bearing chemistry, in protoplanetary disks. To analyse the observed distributions in light of the H2CS binding energy, in order to discuss the role of thermal
Methyl mercaptan (CH3SH) is a known interstellar molecule with abundances high enough that the detection of some of its minor isotopologues is promising. The present study aims at providing accurate spectroscopic parameters for the (13)CH3SH isotopol
The mass of a star is arguably its most fundamental parameter. For red giant stars, tracers luminous enough to be observed across the Galaxy, mass implies a stellar evolution age. It has proven to be extremely difficult to infer ages and masses direc