ﻻ يوجد ملخص باللغة العربية
The Majorana Demonstrator is an ultra low-background experiment searching for neutrinoless double-beta decay in $^{76}$Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. We present the first limits for tri-nucleon decay-specific modes and invisible decay modes for Ge isotopes. We find a half-life limit of $4.9 times 10^{25}$ yr for the decay $^{76}{rm Ge(ppn)} to {}^{73}{rm Zn} e^+pi^+$ and $4.7times10^{25}$ yr for the decay $^{76}{rm Ge(ppp)} to ^{73}{rm Cu} e^+pi^+pi^+$. The half-life limit for the invisible tri-proton decay mode of $^{76}$Ge was found to be $7.5times10^{24}$ yr.
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44.8-kg (29.7 kg enriched >88% in Ge-76) to search for neutrinoless double beta decay in Ge-76. The next genera
Neutrinoless double-beta decay searches seek to determine the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The {sc Majorana} Collaboration is assembling an array of high purity Ge detecto
The NEMO-3 detector, which had been operating in the Modane Underground Laboratory from 2003 to 2010, was designed to search for neutrinoless double $beta$ ($0 ubetabeta$) decay. We report final results of a search for $0 ubetabeta$ decays with $6.91
This paper presents a review of the search for neutrinoless double beta decay of $^{76}$Ge with emphasis on the recent results of the GERDA experiment. It includes an appraisal of fifty years of research on this topic as well as an outlook.
The NEMO-3 experiment at the Modane Underground Laboratory has investigated the double-$beta$ decay of $^{48}{rm Ca}$. Using $5.25$ yr of data recorded with a $6.99,{rm g}$ sample of $^{48}{rm Ca}$, approximately $150$ double-$beta$ decay candidate e