ترغب بنشر مسار تعليمي؟ اضغط هنا

Status and Prospects of the Search for Neutrinoless Double Beta Decay of $^{76}$Ge

77   0   0.0 ( 0 )
 نشر من قبل Karl-Tasso Knoepfle
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a review of the search for neutrinoless double beta decay of $^{76}$Ge with emphasis on the recent results of the GERDA experiment. It includes an appraisal of fifty years of research on this topic as well as an outlook.



قيم البحث

اقرأ أيضاً

139 - Karl-Tasso Knoepfle 2008
GERDA, the GERmanium Detector Array experiment, is a new double beta-decay experiment which is currently under construction in the INFN National Gran Sasso Laboratory (LNGS), Italy. It is implementing a new shielding concept by operating bare Ge diod es - enriched in Ge-76 - in high purity liquid argon supplemented by a water shield. The aim of GERDA is to verify or refute the recent claim of discovery, and, in a second phase, to achieve a two orders of magnitude lower background index than recent experiments. The paper discusses motivation, physics reach, design and status of construction of GERDA, and presents some R&D results.
The NEMO-3 experiment at the Modane Underground Laboratory has investigated the double-$beta$ decay of $^{48}{rm Ca}$. Using $5.25$ yr of data recorded with a $6.99,{rm g}$ sample of $^{48}{rm Ca}$, approximately $150$ double-$beta$ decay candidate e vents have been selected with a signal-to-background ratio greater than $3$. The half-life for the two-neutrino double-$beta$ decay of $^{48}{rm Ca}$ has been measured to be $T^{2 u}_{1/2},=,[6.4, ^{+0.7}_{-0.6}{rm (stat.)} , ^{+1.2}_{-0.9}{rm (syst.)}] times 10^{19},{rm yr}$. A search for neutrinoless double-$beta$ decay of $^{48}{rm Ca}$ yields a null result and a corresponding lower limit on the half-life is found to be $T^{0 u}_{1/2} > 2.0 times 10^{22},{rm yr}$ at $90%$ confidence level, translating into an upper limit on the effective Majorana neutrino mass of $< m_{betabeta} > < 6.0 - 26$ ${rm eV}$, with the range reflecting different nuclear matrix element calculations. Limits are also set on models involving Majoron emission and right-handed currents.
187 - R. Arnold , C. Augier , J.D. Baker 2015
The NEMO-3 detector, which had been operating in the Modane Underground Laboratory from 2003 to 2010, was designed to search for neutrinoless double $beta$ ($0 ubetabeta$) decay. We report final results of a search for $0 ubetabeta$ decays with $6.91 4$ kg of $^{100}$Mo using the entire NEMO-3 data set with a detector live time of $4.96$ yr, which corresponds to an exposure of 34.3 kg$cdot$yr. We perform a detailed study of the expected background in the $0 ubetabeta$ signal region and find no evidence of $0 ubetabeta$ decays in the data. The level of observed background in the $0 ubetabeta$ signal region $[2.8-3.2]$ MeV is $0.44 pm 0.13$ counts/yr/kg, and no events are observed in the interval $[3.2-10]$ MeV. We therefore derive a lower limit on the half-life of $0 ubetabeta$ decays in $^{100}$Mo of $T_{1/2}(0 ubetabeta)> 1.1 times 10^{24}$ yr at the $90%$ Confidence Level, under the hypothesis of light Majorana neutrino exchange. Depending on the model used for calculating nuclear matrix elements, the limit for the effective Majorana neutrino mass lies in the range $langle m_{ u} rangle < 0.33$--$0.62$ eV. We also report constraints on other lepton-number violating mechanisms for $0 ubetabeta$ decays.
Neutrinoless double-beta decay($0 ubetabeta$) decay is a hypothetical process that violates lepton number, and whose observation would unambiguously indicate that neutrinos are Majorana fermions. In the standard inverted-ordering neutrino mass scenar io, the minimum possible value of m$_{betabeta}$ corresponds to a half-life around 10$^{28}$ yr for $0 ubetabeta$ decay in $^{76}$Ge, which is the target of the next generation of experiments. The current limits of GERDA and textsc{Majorana Demonstrator} indicate a half-life higher than 10$^{26}$ yr. These experiments use high-purity germanium (HPGe) detectors that are highly-enriched in $^{76}$Ge. They have achieved the best intrinsic energy resolution and the lowest background rate in the signal search region among all $0 ubetabeta$ experiments. Taking advantage of these successes, a new international collaboration - the Large Enriched Germanium Experiment for Neutrinoless $betabeta$ Decay (LEGEND) - has been formed to build a ton-scale experiment with discovery potential covering the inverse-ordering neutrino mass range in a decade, following a phased approach. This first part of LEGEND proceedings describes GERDA and textsc{Majorana Demonstrator} capabilities and the general plan of LEGEND to reach the goal, while the second part is focused in the status of the first stage of LEGEND, LEGEND-200.
We propose a novel detection concept for neutrinoless double-beta decay searches. This concept is based on a Time Projection Chamber (TPC) filled with high-pressure gaseous xenon, and with separated-function capabilities for calorimetry and tracking. Thanks to its excellent energy resolution, together with its powerful background rejection provided by the distinct double-beta decay topological signature, the design discussed in this Letter Of Intent promises to be competitive and possibly out-perform existing proposals for next-generation neutrinoless double-beta decay experiments. We discuss the detection principles, design specifications, physics potential and R&D plans to construct a detector with 100 kg fiducial mass in the double-beta decay emitting isotope Xe(136), to be installed in the Canfranc Underground Laboratory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا