ترغب بنشر مسار تعليمي؟ اضغط هنا

Transferring Knowledge across Learning Processes

265   0   0.0 ( 0 )
 نشر من قبل Sebastian Flennerhag
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In complex transfer learning scenarios new tasks might not be tightly linked to previous tasks. Approaches that transfer information contained only in the final parameters of a source model will therefore struggle. Instead, transfer learning at a higher level of abstraction is needed. We propose Leap, a framework that achieves this by transferring knowledge across learning processes. We associate each task with a manifold on which the training process travels from initialization to final parameters and construct a meta-learning objective that minimizes the expected length of this path. Our framework leverages only information obtained during training and can be computed on the fly at negligible cost. We demonstrate that our framework outperforms competing methods, both in meta-learning and transfer learning, on a set of computer vision tasks. Finally, we demonstrate that Leap can transfer knowledge across learning processes in demanding reinforcement learning environments (Atari) that involve millions of gradient steps.

قيم البحث

اقرأ أيضاً

Process mining deals with extraction of knowledge from business process execution logs. Traditional process mining tasks, like process model generation or conformance checking, rely on a minimalistic feature set where each event is characterized only by its case identifier, activity type, and timestamp. In contrast, the success of modern machine learning is based on models that take any available data as direct input and build layers of features automatically during training. In this work, we introduce ProcK (Process & Knowledge), a novel pipeline to build business process prediction models that take into account both sequential data in the form of event logs and rich semantic information represented in a graph-structured knowledge base. The hybrid approach enables ProcK to flexibly make use of all information residing in the databases of organizations. Components to extract inter-linked event logs and knowledge bases from relational databases are part of the pipeline. We demonstrate the power of ProcK by training it for prediction tasks on the OULAD e-learning dataset, where we achieve state-of-the-art performance on the tasks of predicting student dropout from courses and predicting their success. We also apply our method on a number of additional machine learning tasks, including exam score prediction and early predictions that only take into account data recorded during the first weeks of the courses.
Systematic financial trading strategies account for over 80% of trade volume in equities and a large chunk of the foreign exchange market. In spite of the availability of data from multiple markets, current approaches in trading rely mainly on learni ng trading strategies per individual market. In this paper, we take a step towards developing fully end-to-end global trading strategies that leverage systematic trends to produce superior market-specific trading strategies. We introduce QuantNet: an architecture that learns market-agnostic trends and use these to learn superior market-specific trading strategies. Each market-specific model is composed of an encoder-decoder pair. The encoder transforms market-specific data into an abstract latent representation that is processed by a global model shared by all markets, while the decoder learns a market-specific trading strategy based on both local and global information from the market-specific encoder and the global model. QuantNet uses recent advances in transfer and meta-learning, where market-specific parameters are free to specialize on the problem at hand, whilst market-agnostic parameters are driven to capture signals from all markets. By integrating over idiosyncratic market data we can learn general transferable dynamics, avoiding the problem of overfitting to produce strategies with superior returns. We evaluate QuantNet on historical data across 3103 assets in 58 global equity markets. Against the top performing baseline, QuantNet yielded 51% higher Sharpe and 69% Calmar ratios. In addition we show the benefits of our approach over the non-transfer learning variant, with improvements of 15% and 41% in Sharpe and Calmar ratios. Code available in appendix.
Deep neural models have hitherto achieved significant performances on numerous classification tasks, but meanwhile require sufficient manually annotated data. Since it is extremely time-consuming and expensive to annotate adequate data for each class ification task, learning an empirically effective model with generalization on small dataset has received increased attention. Existing efforts mainly focus on transferring task-relevant knowledge from other similar data to tackle the issue. These approaches have yielded remarkable improvements, yet neglecting the fact that the task-irrelevant features could bring out massive negative transfer effects. To date, no large-scale studies have been performed to investigate the impact of task-irrelevant features, let alone the utilization of this kind of features. In this paper, we firstly propose Task-Irrelevant Transfer Learning (TIRTL) to exploit task-irrelevant features, which mainly are extracted from task-irrelevant labels. Particularly, we suppress the expression of task-irrelevant information and facilitate the learning process of classification. We also provide a theoretical explanation of our method. In addition, TIRTL does not conflict with those that have previously exploited task-relevant knowledge and can be well combined to enable the simultaneous utilization of task-relevant and task-irrelevant features for the first time. In order to verify the effectiveness of our theory and method, we conduct extensive experiments on facial expression recognition and digit recognition tasks. Our source code will be also available in the future for reproducibility.
190 - Jiaqian Ren , Hao Peng , Lei Jiang 2021
Recently published graph neural networks (GNNs) show promising performance at social event detection tasks. However, most studies are oriented toward monolingual data in languages with abundant training samples. This has left the more common multilin gual settings and lesser-spoken languages relatively unexplored. Thus, we present a GNN that incorporates cross-lingual word embeddings for detecting events in multilingual data streams. The first exploit is to make the GNN work with multilingual data. For this, we outline a construction strategy that aligns messages in different languages at both the node and semantic levels. Relationships between messages are established by merging entities that are the same but are referred to in different languages. Non-English message representations are converted into English semantic space via the cross-lingual word embeddings. The resulting message graph is then uniformly encoded by a GNN model. In special cases where a lesser-spoken language needs to be detected, a novel cross-lingual knowledge distillation framework, called CLKD, exploits prior knowledge learned from similar threads in English to make up for the paucity of annotated data. Experiments on both synthetic and real-world datasets show the framework to be highly effective at detection in both multilingual data and in languages where training samples are scarce.
We present a scalable approach for Detecting Objects by transferring Common-sense Knowledge (DOCK) from source to target categories. In our setting, the training data for the source categories have bounding box annotations, while those for the target categories only have image-level annotations. Current state-of-the-art approaches focus on image-level visual or semantic similarity to adapt a detector trained on the source categories to the new target categories. In contrast, our key idea is to (i) use similarity not at the image-level, but rather at the region-level, and (ii) leverage richer common-sense (based on attribute, spatial, etc.) to guide the algorithm towards learning the correct detections. We acquire such common-sense cues automatically from readily-available knowledge bases without any extra human effort. On the challenging MS COCO dataset, we find that common-sense knowledge can substantially improve detection performance over existing transfer-learning baselines.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا